Warning: DOMDocument::loadHTML(): htmlParseEntityRef: expecting ';' in Entity, line: 15 in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/header.php on line 30

Warning: DOMDocument::loadHTML(): htmlParseEntityRef: expecting ';' in Entity, line: 15 in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/header.php on line 30

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Joining Process Lasers:

High Energy for Joining Applications like Welding, Cladding, Brazing, and Soldering

          • Versatile Laser Diode Configurations for Precision Laser Joining
          • Optimized Performance for High-Quality Joining Applications
          • Reliable, Industrial-Grade Solutions Tailored for Diverse Environments

We’re experts at helping select the right configuration for you!

Why Choose a Joining Laser?

Versatile Laser Diode Configurations for Precision Laser Joining
    • Fiber-coupled & free-space, single & multimode for varied materials & joint types
    • Single emitter, arrays (bars) & laser diode stacks from mW to kW-range
    • From compact TO-can packages to OEM modules to turnkey systems

settings window with slider bars and arrow cursor representing laser options and configurations

Optimized Performance for High-Quality Joining Applications
    • High-power laser diodes deliver controlled heat for cladding, welding, brazing, and soldering
    • Reduced HAZ & precise energy distribution enable superior joint strength and quality
    • Adjustable power, UV-SWIR wavelengths & custom configurations to meet your needs

gear arrow and puzzle pieces representing highly flexible and easily integrated lasers

Reliable, Industrial-Grade Solutions Tailored for Diverse Environments
    • Durable designs w/ rugged, field-proven components & high-volume production capabilities
    • Flexible cooling and beam delivery options for seamless adaptation to different setups
    • Made in the USA options and customizable platforms for reliable, precision joining

Over the last 30 years, RPMC has fielded thousands of joining lasers, built to endure the toughest conditions, delivering reliable performance from the shop floor to outdoor environments. Designed to withstand humidity, heat, dust, and vibration, these lasers provide consistent output with low maintenance, ensuring your operations run smoothly. With a versatile range of power, energy, and wavelength options, our lasers can be tailored to meet the specific demands of your application, from precision tasks to high-power throughput. We’re not just providing a product—we’re partnering with you to find the perfect solution and support you through every stage of your project, dedicated to helping you achieve long-term success.

Let us help define the right solution for you!

Filters Reset

Category

Type

Wavelength Selection

Picture Part Number Wavelength (nm) Description Type
JDL-Unmounted Bars: 760-1070nm Unmounted Laser Diode Bars & Single Emitters JDL-Unmounted Bars 760-1070 Laser Diode, Multimode, Unmounted bar, Infrared, 760-1070nm, up to 300W CW/500W QCW Single Emitter, Array (Bar)
JOLD-FC: 760-1070 & 1470nm Fiber-Coupled Laser Diode Modules JOLD-FC 760-1070 Laser Diode, Multimode, Fiber-coupled, Infrared, 760-1470nm, up to 400W Array (Bar), Fiber-Coupled
JOLD-Open Heatsinks: 760-1070nm Single Laser Diode Bar Package JOLD-Open Heatsinks 760-1070 Laser Diode, Multimode, Bar package, Infrared, 760-1070nm, up to 300W Array (Bar)
JOLD-Stacks: 760-1070nm High-Power Laser Diode Stacks JOLD-Stacks 760-1070 Laser Diode, Multimode, Bar stack, Infrared, 760-1070nm, up to 2400W Array (Bar)
LDX-IR-FC: Fiber coupled Infrared Multimode Laser Diode LDX-IR-FC 750, 780, 797, 808, 830, 860, 915, 980, 1064, 1120, 1210, 1280, 1370 Laser Diode, Multimode, Fiber-coupled, Infrared, 750-1400nm, up to 12.8W Single Emitter, Fiber-Coupled, Made in the USA
LDX-IR-FS: Free Space Infrared Multimode Laser Diode LDX-IR-FS 750, 780, 797, 808, 830, 860, 915, 980, 1064, 1120, 1210, 1280, 1370 Laser Diode, Multimode, Infrared, 750-1400nm, up to 16W Single Emitter, Made in the USA
LDX-SWIR-FC: Fiber coupled Short-wave Infrared Multimode Laser Diode LDX-SWIR-FC 1470, 1550, 1620, 1640, 1675, 1850 Laser Diode, Multimode, Fiber-coupled, SWIR, 1400-3000nm, up to 5.6W Single Emitter, "Eye Safe", Fiber-Coupled, Made in the USA
LDX-SWIR-FS: Free Space Short-Wave Infrared Multimode Laser Diode LDX-SWIR-FS 1470, 1550, 1620, 1675, 1850 Laser Diode, Multimode, SWIR, 1400-3000nm, up to 7W Single Emitter, "Eye Safe", Made in the USA
LDX-VIS-FC: Fiber coupled Visible Multimode Laser Diode LDX-VIS-FC 445, 520, 622, 630, 660, 685, 735, 750 Laser Diode, Multimode, Fiber-coupled, Visible, 400-750nm, up to 4W Single Emitter, Fiber-Coupled, Made in the USA
LDX-VIS-FS: Free Space Visible Multimode Laser Diode LDX-VIS-FS 445, 520, 622, 630, 660, 685, 735, 750 Laser Diode, Multimode, Visible, 400-750nm, up to 5W Single Emitter, Made in the USA
LGR-XXX: Ultra-Reliable He-Ne Replacement Tubes LGR-XXX 543, 594, 633 He-Ne Laser Replacement Tube, Single mode, 543-633nm, up to 20mW HeNe Lasers, Narrow Linewidth, Long Coherence Length, Single Longitudinal Mode (SLM), Collimated Beam, Fiber-Coupled
RPK-IR-MM: Fiber-Coupled IR Multimode Laser Diodes RPK-IR-MM 793, 808, 976, 1064 Laser Diode, Multimode, Fiber-coupled, 793nm-1940nm, up to 300W Single Emitter, Multi-Emitter, Fiber-Coupled
RPK-IR-STAB: Fiber-Coupled IR Stabilized Laser Diode RPK-IR-STAB 785, 808, 878, 976, 1064 Laser Diode, Wavelength Stabilized, Fiber-coupled, Infrared, 760-1400nm, up to 430W Multi-Emitter, VBG, Narrow Linewidth, Single Longitudinal Mode (SLM), Fiber-Coupled
RPK-TK: Fiber-Coupled Turn-Key Direct Diode Laser System RPK-TK 405, 445, 520, 635, 660, 690, 785, 808, 830, 915, 976, 1064 Laser Diode, Wavelength Stabilized, Fiber-coupled, 405-1064nm, up to 300W Multi-Emitter, Fiber-Coupled, Turn-Key System
RPK-VIS-MM: Fiber-Coupled Visible Multimode Laser Diode RPK-VIS-MM 405, 525, 635 Laser Diode, Multimode, Fiber-coupled, Visible, 400-750nm, up to 200W Single Emitter, Multi-Emitter, Fiber-Coupled
RWLD-DFB: DFB Laser Diode RWLD-DFB 1064, 1270, 1460, 1485, 1660 Laser Diode, Wavelength Stabilized, SWIR, 1270-1600nm, up to 30mW Single Emitter, DFB, Narrow Linewidth, Single Longitudinal Mode (SLM)
RWLD-IR-MM: Infrared Multimode Laser Diode RWLD-IR-MM 760, 780, 808, 850, 880, 915, 940, 980, 1064 Laser Diode, Multimode, Infrared, 760-1064nm, up to 20W Single Emitter
RWLD-IR-SM: Infrared Single Mode Laser Diode RWLD-IR-SM 760, 780, 808, 850, 880, 915, 940, 980, 1064 Laser Diode, Single mode, Infrared, 760-1400nm, up to 300mW Single Emitter
RWLD-SWIR-MM: SWIR Multimode Laser Diode RWLD-SWIR-MM 1064, 1460, 1535, 1555 Laser Diode, Multimode, SWIR, 1450-1920nm, up to 3W "Eye Safe", Single Emitter
RWLD-VIS-MM: Visible Multimode Laser Diode RWLD-VIS-MM 445, 520, 635, 660 Laser Diode, Multimode, Visible, 445-660nm, up to 3W Single Emitter
RWLD-VIS-SM: Visible Single Mode Laser Diode RWLD-VIS-SM 405, 460, 480, 488, 495, 505, 510, 520, 635, 650, 660 Laser Diode, Single mode, Visible, 445-660nm, up to 300mW Single Emitter
RWLP-DFB: DFB Stabilized Laser Diode RWLP-DFB 1270, 1310, 1410, 1460 Laser Diode, Wavelength Stabilized, Fiber-coupled, SWIR, 1270-1460nm, up to 100mW Single Emitter, DFB, Narrow Linewidth, Single Longitudinal Mode (SLM), Fiber-Coupled
RWLP-IR-MM 1064 Laser Diode, Multimode, Fiber-coupled, Infrared, 750-1400nm, up to 12W Single Emitter, Fiber-Coupled
RWLP-IR-SM: Infrared Single Mode Laser Diode RWLP-IR-SM 1064 Laser Diode, Single mode, Fiber-coupled, Infrared, 785-1310nm, up to 100mW Single Emitter, Fiber-Coupled
RWLP-SWIR-MM: Short-Wave Infrared Multimode Laser Diode RWLP-SWIR-MM 1460 Laser Diode, Multimode, Fiber-coupled, SWIR, 1450-1570nm, up to 12W "Eye Safe", Single Emitter, Fiber-Coupled
RWLP-UV-MM: Ultra Violet Multimode Laser Diode RWLP-UV-MM 375 Laser Diode, Multimode, Fiber-coupled, Ultraviolet, 375nm, up to 100W Single Emitter, Fiber-Coupled
RWLP-VIS-MM: Visible Multimode Laser Diode RWLP-VIS-MM 405, 445, 520, 660 Laser Diode, Multimode, Fiber-coupled, Visible, 405-660nm, up to 12W Single Emitter, Fiber-Coupled
RWLP-VIS-SM: Visible Single Mode Laser Diode RWLP-VIS-SM 405, 445, 520, 660 Laser Diode, Single mode, Fiber-coupled, Visible, 400-660nm, up to 100mW Single Emitter, Fiber-Coupled

RPMC’s Joining Process Lasers offer advanced capabilities for welding, cladding, brazing, and soldering across automotive, aerospace, electronics, and medical industries. With a range of fiber-coupled and free-space configurations, these high-power CW lasers provide the precise heat control essential for quality joins with minimal heat-affected zones. Available in single emitter, array, and multi-emitter formats, our lasers enable strong, reliable bonds on varied materials, improving production efficiency and final product integrity. From compact modules to complete turnkey systems, RPMC’s lasers are built to meet the demands of industrial joining applications, ensuring dependable performance and robust operation in challenging environments.

Joining Process Laser Applications

Cladding/Deposition Lasers: Laser cladding (typically 808, 9XX, or 1064nm, multimode, high-power diode bar or stack) is a material processing technique in which a small amount of material is added to the surface of another material in a controlled manner.  Typically, this is done in one of two ways either by blowing a focused jet of powdered material in a buffer gas coincident with the cladding laser spot or by depositing the material on the surface first and then scanning over it with the cladding laser.

Welding Lasers: In laser welding, the goal is to use the high-power long pulse lasers with a flat top beam profile to melt the material and fuse together each piece.  The laser beam is typically focused onto the joint between the two parts along with an unfocused cover gas, whose primary objective is to prevent oxidation. Unlike cutting lasers, welding lasers (typically high-power diode bars or stacks) do not to remove material through ablation, utilizing lower powers and larger spot sizes.

Brazing Lasers: Brazing involves joining two or more materials by melting a filler material that has a lower melting point than the base materials. These lasers provide precise control over the heat input, allowing for localized melting of the filler material without excessively heating the base materials. This results in strong joints with minimal distortion and excellent aesthetics.

Soldering Lasers: Soldering is a process where a filler material, known as solder, is melted to join two or more components together. These lasers offer advantages in soldering applications by providing rapid, controlled heating of the solder and the workpieces. This leads to reliable and high-quality solder joints, particularly in applications requiring fine-scale connections or in areas with restricted accessibility.

Let Us Help

With 1000s of fielded units, and over 25 years of experience, providing OEMs, contract manufacturers, and researchers with the best laser solution for their application, our expert team is ready to help! Working with RPMC ensures you are getting trusted advice from our knowledgeable and technical staff on a wide range of laser products.  RPMC and our manufacturers are willing and able to provide custom solutions for your unique application.

If you have any questions, or if you would like some assistance please contact us. Furthermore, you can email us at info@rpmclasers.com to talk to a knowledgeable Product Manager.

Check out our Online Store: This page contains In-Stock products and an ever-changing assortment of various types of new lasers at marked-down/discount prices.

We’re experts at helping select the right configuration for you!

Component FAQs
Can I operate multiple laser diodes from the same power supply?

Can I operate multiple laser diodes from the same power supply?

The same power supply can drive multiple laser diodes if they are connected in series, but they must never be connected in parallel. When two diodes are connected in series, they will function properly as long as the compliance voltage is large enough to cover the voltage drop across each diode. For example, suppose you are trying to power two diode lasers, each with an operating voltage of 1.9 V, and connect the two in series. In that case, the pulsed or CW laser driver must have a total voltage capacity greater than 3.8 V. This configuration works because diodes share the same current when connected in series. In contrast, when two diodes are connected in parallel, the current is no longer shared between the two diodes. Get more details on the topic in this article: “Can I Operate Multiple Laser Diodes From the Same Power Supply?” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

Can laser diodes emit green, blue, or UV light?

Can laser diodes emit green, blue, or UV light?

The output wavelength of a semiconductor laser is based on the difference in energy between the valance and conduction bands of the material (bandgap energy). Since the energy of a photon is inversely proportional to its wavelength, this means that a larger bandgap energy will result in a shorter emission wavelength. Due to the relatively wide bandgap energy of 3.4 eV, gallium nitride (GaN) is ideal for the production of semiconductor optoelectronic devices, producing blue wavelength light without the need for nonlinear crystal harmonic generation. Since the mid-’90s, GaN substrates have been the common material utilized for blue LEDs. In recent years, GaN based laser technology has provided blue, green and UV laser diodes, now available in wavelengths from 375 nm to 521 nm, with output powers exceeding 100 watts. Read our article, titled “Gallium Nitride (GaN) Laser Diodes: Green, Blue, and UV Wavelengths” to learn more about GaN Based Laser Diodes, available through RPMC. Get more information from our Lasers 101, Blogs, Whitepapers, and FAQs pages in our Knowledge Center!

How long will a laser diode last?
How long will a laser diode last?

Honestly, it depends on several factors, and there is no simple chart to cover everything. Typical diode lifetimes are in the range of 25,000 to 50,000 hours. Though, there are lifetime ratings outside this range, depending on the configuration. Furthermore, there are a wide range of degradation sources that contribute to a shorter lifespan of laser diodes. These degradation sources include dislocations that affect the inner region, metal diffusion and alloy reactions that affect the electrode, solder instability (reaction and migration) that affect the bonding parts, separation of metals in the heatsink bond, and defects in buried heterostructure devices. Read more about diode lifetime and contributing factors in this article: “Understanding Laser Diode Lifetime.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What factors affect the lifetime of laser diodes?
What factors affect the lifetime of laser diodes?

There are a great many factors that can increase or decrease the lifetime of a laser diode. One of the main considerations is thermal management. Mounting or heatsinking of the package is of tremendous importance because operating temperature strongly influences lifetime and performance. Other factors to consider include electrostatic discharge (ESD), voltage and current spikes, back reflections, flammable materials, noxious substances, outgassing materials (even thermal compounds), electrical connections, soldering method and fumes, and environmental considerations including ambient temperature, and contamination from humidity and dust. Read more about these critical considerations and contributing factors in this article: “How to Improve Laser Diode Lifetime: Advice and Precautions on Mounting.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What is a laser diode?
What is a laser diode?

A Laser Diode or semiconductor laser is the simplest form of Solid-State Laser. Laser diodes are commonly referred to as edge emitting laser diodes because the laser light is emitted from the edge of the substrate. The light emitting region of the laser diode is commonly called the emitter. The emitter size and the number of emitters determine output power and beam quality of a laser diode. Electrically speaking, a laser diode is a PIN diode. The intrinsic (I) region is the active region of the laser diode. The N and P regions provide the active region with the carriers (electrons and holes). Initially, research on laser diodes was carried out using P-N diodes. However, all modern laser diodes utilize the double-hetero-structure implementation. This design confines the carriers and photons, allowing a maximization of recombination and light generation. If you want to start reading more about laser diodes, try this whitepaper “How to Improve Laser Diode Lifetime.” If you want to read more about the Laser Diode Types we offer, check out the Overview of Laser Diodes section on our Lasers 101 Page!

What is the difference between laser diodes and VCSELs?
What is the difference between laser diodes and VCSELs?

Laser Diodes and VCSELs are semiconductor lasers,  the simplest form of Solid State Lasers.  Laser diodes are commonly referred to as edge emitting laser diodes because the laser light is emitted from the edge of the substrate. The light emitting region of the laser diode is commonly called the emitter.  The emitter size and the quantity of emitters determine output power and beam quality of a laser diode. These Fabry Perot Diode Lasers with a single emission region (Emitter) are typically called laser diode chips, while a linear array of emitters is called laser diode bars. Laser diode bars typically use multimode emitters, the number of emitters per substrate can vary from 5 emitters to 100 emitters. VCSELs (Vertical Cavity Surface Emitting Laser) emit light perpendicular to the mounting surface as opposed to parallel like edge emitting laser diodes.  VCSELs offer a uniform spatial illumination in a circular illumination pattern with low speckle. If you want to read more about lasers in general, and help narrowing down the selection to find the right laser for you, check out our Knowledge Center for our Blogs, Whitepapers, and FAQ pages, as well as our Lasers 101 Page!VCSEL

What’s the difference between single transverse mode & single longitudinal mode?

What’s the difference between single transverse mode & single longitudinal mode?

Within the laser community, one of the most overused and often miscommunicated terms is the phrase “single mode.”  This is because a laser beam when traveling through air takes up a three-dimensional volume in space similar to that of a cylinder; and just as with a cylinder, a laser beam can be divided into independent coordinates each with their own mode structure.  For a cylinder we would call these the length and the cross-section, but as shown in the figure below for a laser beam, we define these as the transverse electromagnetic (TEM) plane and the longitudinal axis.   Both sets of modes are fundamental to the laser beam’s properties, since the TEM modes determine the spatial distribution of the laser beams intensity, and the longitudinal modes determine the spectral properties of the laser.  As a result, when a laser is described as being “single-mode” first you need to make sure that you truly understand which mode is being referred to.  Meaning that you must know if the laser is single transverse mode, single longitudinal mode, or both. Get all the information you need in this article: “What is Single Longitudinal Mode?” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!