Warning: DOMDocument::loadHTML(): htmlParseEntityRef: expecting ';' in Entity, line: 15 in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/header.php on line 30

Warning: DOMDocument::loadHTML(): htmlParseEntityRef: expecting ';' in Entity, line: 15 in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/header.php on line 30

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Molecular Manipulation & Analysis Lasers:

Versatile Laser Platforms Tailored for Molecular Insights

          • Wide Wavelength Range for Diverse Applications in Biophotonics
          • Exceptional Control & Versatility for Molecular Analysis
          • Customizable and Integration-Ready Solutions

We’re experts at helping select the right configuration for you!

Why Choose a Molecular Manipulation & Analysis Laser?

simple line graphic illustrating the choice between multiple wavelengths - a finger pointing to one of three colored lambda symbols

Wide Wavelength Range for Diverse Applications in Biophotonics
    • UV to MWIR wavelengths ideal for cellular imaging, DNA sequencing & optogenetics
    • Single-mode & SLM options with narrow linewidth for high spectral accuracy
    • CW, nano-, pico- & femtosecond configurations for precise energy delivery

settings window with slider bars and arrow cursor representing laser options and configurations

Exceptional Control & Versatility for Molecular Analysis
    • High-quality TEM00 beam profiles critical for confocal microscopy & flow cytometry
    • Low noise & high stability ensure reliable, reproducible analysis in sensitive applications
    • Fiber-coupled & free-space configurations, adaptable for lab or field setups

gear arrow and puzzle pieces representing highly flexible and easily integrated lasers

Customizable and Integration-Ready Solutions
    • Component to turnkey solutions tailored for research labs & OEM integration
    • Configurable pulse width & repetition rate for tailored application requirements
    • Compact & ruggedized options available for field and lab reliability

Over the last 30 years, RPMC has fielded thousands of molecular manipulation & analysis lasers, built to endure the toughest conditions, delivering reliable performance from the shop floor to outdoor environments. Designed to withstand humidity, heat, dust, and vibration, these lasers provide consistent output with low maintenance, ensuring your operations run smoothly. With a versatile range of power, energy, and wavelength options, our lasers can be tailored to meet the specific demands of your application, from precision tasks to high-power throughput. We’re not just providing a product—we’re partnering with you to find the perfect solution and support you through every stage of your project, dedicated to helping you achieve long-term success.

Let us help define the right solution for you!

Filters Reset

Category

Type

Wavelength Selection

Power Selection

Picture Part Number Wavelength (nm) Description Type
Halite 2: Truly-All-Fiber Amplified Femtosecond Oscillator Halite 2 1030 Fiber Laser, fs pulsed, 1030nm, up to 2W, < 230fs Pulsed Fiber Lasers, Ultrafast Lasers, Ruggedized, High Peak Power, Turn-Key System
HL-MM: Multimode Laser Diode HL-MM 405, 630, 638, 730, 830, 850 Laser Diode, Multimode, 405-850nm, up to 2.4W Single Emitter
HL-SM: Single-Mode Laser Diode HL-SM 405, 630, 660, 730, 830, 850 Laser Diode, Single mode, 405-850nm, up to 300mW Single Emitter
Jasper Flex: Compact High-Power Femtosecond Fiber Laser Jasper Flex 1030 Fiber Laser, fs/ps pulsed, 1030nm, up to 30W, up to 1MHz, up to 100µJ, <270fs-8ps, Single Shot - 20MHz Pulsed Fiber Lasers, Ultrafast Lasers, Ruggedized, Adjustable Rep Rate, Adjustable Pulse Width, High Peak Power
JDL-Unmounted Bars: 760-1070nm Unmounted Laser Diode Bars & Single Emitters JDL-Unmounted Bars 760-1070 Laser Diode, Multimode, Unmounted bar, Infrared, 760-1070nm, up to 300W CW/500W QCW Single Emitter, Array (Bar)
LDX-IR-FC: Fiber coupled Infrared Multimode Laser Diode LDX-IR-FC 750, 780, 797, 808, 830, 860, 915, 980, 1064, 1120, 1210, 1280, 1370 Laser Diode, Multimode, Fiber-coupled, Infrared, 750-1400nm, up to 12.8W Single Emitter, Fiber-Coupled, Made in the USA
LDX-IR-FS: Free Space Infrared Multimode Laser Diode LDX-IR-FS 750, 780, 797, 808, 830, 860, 915, 980, 1064, 1120, 1210, 1280, 1370 Laser Diode, Multimode, Infrared, 750-1400nm, up to 16W Single Emitter, Made in the USA
LDX-SWIR-FC: Fiber coupled Short-wave Infrared Multimode Laser Diode LDX-SWIR-FC 1470, 1550, 1620, 1640, 1675, 1850 Laser Diode, Multimode, Fiber-coupled, SWIR, 1400-3000nm, up to 5.6W Single Emitter, "Eye Safe", Fiber-Coupled, Made in the USA
LDX-SWIR-FS: Free Space Short-Wave Infrared Multimode Laser Diode LDX-SWIR-FS 1470, 1550, 1620, 1675, 1850 Laser Diode, Multimode, SWIR, 1400-3000nm, up to 7W Single Emitter, "Eye Safe", Made in the USA
LDX-VIS-FC: Fiber coupled Visible Multimode Laser Diode LDX-VIS-FC 445, 520, 622, 630, 660, 685, 735, 750 Laser Diode, Multimode, Fiber-coupled, Visible, 400-750nm, up to 4W Single Emitter, Fiber-Coupled, Made in the USA
LDX-VIS-FS: Free Space Visible Multimode Laser Diode LDX-VIS-FS 445, 520, 622, 630, 660, 685, 735, 750 Laser Diode, Multimode, Visible, 400-750nm, up to 5W Single Emitter, Made in the USA
LGK-XXX: Ultra-Reliable He-Ne Laser Modules LGK-XXX 543, 594, 633 He-Ne Laser Module, Single mode, 543-633nm, up to 20mW HeNe Lasers, Narrow Linewidth, Long Coherence Length, Single Longitudinal Mode (SLM), Collimated Beam, Fiber-Coupled
LGR-XXX: Ultra-Reliable He-Ne Replacement Tubes LGR-XXX 543, 594, 633 He-Ne Laser Replacement Tube, Single mode, 543-633nm, up to 20mW HeNe Lasers, Narrow Linewidth, Long Coherence Length, Single Longitudinal Mode (SLM), Collimated Beam, Fiber-Coupled
LXC-Combiner: 4 or 6 Wavelength Laser Module Combiners LXC-Combiner Multiple Wavelength Options Laser Combiner, Single mode, up to 6 Wavelengths, 375-1064nm, up to 500mW LD Module, CW DPSS Lasers, Narrow Linewidth, Long Coherence Length, Single Longitudinal Mode (SLM), Multi Wavelength, Collimated Beam, Fiber-Coupled, Turn-Key System, Customizable
LXX-IR-SLM: Infrared SLM Laser Module LXX-IR-SLM 785, 830, 1064 Laser Module, Stabilized, Infrared, 785-1064nm, up to 300mW LD Module, CW DPSS Lasers, Narrow Linewidth, Long Coherence Length, Single Longitudinal Mode (SLM), Collimated Beam, Fiber-Coupled, Customizable
LXX-IR-SM: Infrared Single Mode Laser Diode Module LXX-IR-SM 785, 808, 830, 915, 980, 1064 Laser Module, Single mode, Infrared, 785-1064nm, up to 500mW LD Module, CW DPSS Lasers, Collimated Beam, Fiber-Coupled, Customizable
LXX-UV-SM: Ultraviolet Single Mode Laser Diode Module LXX-UV-SM 375, 395 Laser Module, Single mode, Ultraviolet, 375-395nm, up to 120mW LD Module, Collimated Beam, Fiber-Coupled, Customizable
LXX-VIS-SM: Visible Single Mode Laser Diode Module LXX-VIS-SM 405, 415, 445, 450, 458, 473, 488, 505, 515, 532, 553, 561, 607, 633, 638, 640, 642, 647, 660, 730 Laser Module, Single mode, Visible, 405-730nm, up to 500mW LD Module, CW DPSS Lasers, Collimated Beam, Fiber-Coupled, Customizable
MB-Combiner: Multi-Wavelength Laser Diode Combiner MB-Combiner Multiple Wavelength Options Laser Combiner, Multimode/Single mode, up to 4 Wavelengths, 405-850nm, up to 150mW LD Module, CW DPSS Lasers, Narrow Linewidth, Long Coherence Length, Single Longitudinal Mode (SLM), Multi Wavelength, Collimated Beam, Fiber-Coupled, Customizable
MB-IR-MM: Infrared Multimode Laser Diode Module MB-IR-MM 785, 808, 830 Laser Module, Multimode, Infrared, 785-1064nm, up to 3W LD Module, Collimated Beam, Fiber-Coupled
MB-IR-SLM: Infrared SLM Laser Diode Module MB-IR-SLM 785, 830, 1030, 1064 Laser Module, Stabilized, Infrared, 783-1064nm, up to 1000mW LD Module, CW DPSS Lasers, Narrow Linewidth, Long Coherence Length, Single Longitudinal Mode (SLM), Collimated Beam, Fiber-Coupled
MB-IR-SM: Infrared Single Mode Laser Diode Module MB-IR-SM 785, 808, 830, 850, 915, 975, 1064, 1123, 1310 Laser Module, Single mode, Infrared, 785-1310nm, up to 300mW LD Module, CW DPSS Lasers, Collimated Beam, Fiber-Coupled
MB-VIS-MM: Visible Multimode Laser Diode Module MB-VIS-MM 450, 638 Laser Module, Multimode, Visible, 450-638nm, up to 600mW LD Module, Collimated Beam, Fiber-Coupled, Customizable
MB-VIS-SLM: Visible SLM Laser Diode Module MB-VIS-SLM 405, 488, 520, 633 Laser Module, Stabilized, Visible, 405-633nm, up to 170mW LD Module, CW DPSS Lasers, Narrow Linewidth, Long Coherence Length, Single Longitudinal Mode (SLM), Collimated Beam, Fiber-Coupled
MB-VIS-SM: Visible Single Mode Laser Diode Module MB-VIS-SM 405, 488, 505, 520, 633, 660 Laser Module, Single mode, Visible, 405-660nm, up to 200mW LD Module, Collimated Beam, Fiber-Coupled
sleek, modern, light grey colored DPSS laser housing Q-SHIFT Multiple Wavelength Options DPSS Laser, ns pulsed, 291-1571nm, up to 40mJ, up to 100Hz Pulsed DPSS Lasers, High Pulse Energy, High Peak Power, Low Jitter, Turn-Key System, Customizable
sleek modern light grey Nanosecond DPSS laser Quantas-Q-SPARK-1064 Q-SPARK 266, 355, 532, 1064 DPSS Laser, ns/ps pulsed, 266-1064nm, up to 20mJ, up to 100Hz Pulsed DPSS Lasers, High Pulse Energy, High Peak Power, Low Jitter, Turn-Key System, Customizable
Q-TUNE-HR: High Rep. Rate Tunable DPSS laser/OPO Q-TUNE-HR Tunable Tunable DPSS Laser, OPO, ns Pulsed, 750-1800 nm, up to 100 µJ, up to 100 kHz Pulsed DPSS Lasers, Tunable Lasers, Multi Wavelength, High Peak Power, Turn-Key System, Customizable
Q-TUNE-IR: Tunable IR DPSS Laser Q-TUNE-IR Tunable Tunable DPSS Laser, OPO, ns pulsed, 1380-4500nm, up to 17mJ, up to 100Hz Pulsed DPSS Lasers, Tunable Lasers, Multi Wavelength, High Pulse Energy, High Peak Power, Turn-Key System, Customizable
sleek, modern, light grey colored OPO & DPSS laser housing Q-TUNE Tunable Tunable DPSS Laser, OPO, ns pulsed, 210-2300nm, up to 8mJ, up to 100Hz Pulsed DPSS Lasers, Tunable Lasers, Multi Wavelength, High Pulse Energy, High Peak Power, Turn-Key System, Customizable
sleek, modern, light grey colored DPSS laser housing Quantas-Q1 211, 213, 263, 266, 351, 355, 526.5, 532, 1053, 1064 DPSS Laser, ns pulsed, 211-1064nm, up to 40mJ, up to 50Hz Pulsed DPSS Lasers, Adjustable Rep Rate, High Pulse Energy, High Peak Power, Low Jitter, Turn-Key System, Customizable
Quantas-Q2-1064: High Energy, Compact, Nanosecond, DPSS Laser Quantas-Q2 211, 213, 263, 266, 351, 355, 526.5, 532, 1053, 1064 DPSS Laser, ns pulsed, 211-1064nm, up to 80mJ, up to 200Hz Pulsed DPSS Lasers, High Pulse Energy, High Peak Power, Low Jitter, Turn-Key System, Customizable
RWLD-DFB: DFB Laser Diode RWLD-DFB 1064, 1270, 1460, 1485, 1660 Laser Diode, Wavelength Stabilized, SWIR, 1270-1600nm, up to 30mW Single Emitter, DFB, Narrow Linewidth, Single Longitudinal Mode (SLM)
RWLD-IR-MM: Infrared Multimode Laser Diode RWLD-IR-MM 760, 780, 808, 850, 880, 915, 940, 980, 1064 Laser Diode, Multimode, Infrared, 760-1064nm, up to 20W Single Emitter
RWLD-IR-SM: Infrared Single Mode Laser Diode RWLD-IR-SM 760, 780, 808, 850, 880, 915, 940, 980, 1064 Laser Diode, Single mode, Infrared, 760-1400nm, up to 300mW Single Emitter
RWLD-SWIR-MM: SWIR Multimode Laser Diode RWLD-SWIR-MM 1064, 1460, 1535, 1555 Laser Diode, Multimode, SWIR, 1450-1920nm, up to 3W "Eye Safe", Single Emitter
RWLD-VIS-MM: Visible Multimode Laser Diode RWLD-VIS-MM 445, 520, 635, 660 Laser Diode, Multimode, Visible, 445-660nm, up to 3W Single Emitter
RWLD-VIS-SM: Visible Single Mode Laser Diode RWLD-VIS-SM 405, 460, 480, 488, 495, 505, 510, 520, 635, 650, 660 Laser Diode, Single mode, Visible, 445-660nm, up to 300mW Single Emitter
RWLP-DFB: DFB Stabilized Laser Diode RWLP-DFB 1270, 1310, 1410, 1460 Laser Diode, Wavelength Stabilized, Fiber-coupled, SWIR, 1270-1460nm, up to 100mW Single Emitter, DFB, Narrow Linewidth, Single Longitudinal Mode (SLM), Fiber-Coupled
RWLP-IR-MM 1064 Laser Diode, Multimode, Fiber-coupled, Infrared, 750-1400nm, up to 12W Single Emitter, Fiber-Coupled
RWLP-IR-SM: Infrared Single Mode Laser Diode RWLP-IR-SM 1064 Laser Diode, Single mode, Fiber-coupled, Infrared, 785-1310nm, up to 100mW Single Emitter, Fiber-Coupled
RWLP-SWIR-MM: Short-Wave Infrared Multimode Laser Diode RWLP-SWIR-MM 1460 Laser Diode, Multimode, Fiber-coupled, SWIR, 1450-1570nm, up to 12W "Eye Safe", Single Emitter, Fiber-Coupled
RWLP-UV-MM: Ultra Violet Multimode Laser Diode RWLP-UV-MM 375 Laser Diode, Multimode, Fiber-coupled, Ultraviolet, 375nm, up to 100W Single Emitter, Fiber-Coupled
RWLP-VIS-MM: Visible Multimode Laser Diode RWLP-VIS-MM 405, 445, 520, 660 Laser Diode, Multimode, Fiber-coupled, Visible, 405-660nm, up to 12W Single Emitter, Fiber-Coupled
RWLP-VIS-SM: Visible Single Mode Laser Diode RWLP-VIS-SM 405, 445, 520, 660 Laser Diode, Single mode, Fiber-coupled, Visible, 400-660nm, up to 100mW Single Emitter, Fiber-Coupled
SL-Pico: White Light Picosecond Supercontinuum Laser SL-Pico 410-2400 Supercontinuum Laser, ps pulsed, White Light, 410-2400nm, up to 200MHz Supercontinuum Laser, Broadband Lasers, Ultrafast Lasers, Multi Wavelength, Adjustable Rep Rate, High Peak Power, Turn-Key System
simple, compact OEM pulsed laser housing with cooling fan and f-theta lens SOL 355, 532, 1064 DPSS Laser, ns pulsed, 355-1064nm, up to 60W, up to 200kHz Pulsed DPSS Lasers, Ruggedized, Adjustable Rep Rate, High Pulse Energy, High Peak Power
sleek modern dpss laser housing, simple cubic design, black and blue TLS-Blue-Fixed-Bandwidth Tunable Tunable Supercontinuum Laser, Broadband, ps pulsed, 410-1700 nm, up to 200MHz Supercontinuum Laser, Broadband Lasers, Tunable Lasers, Ultrafast Lasers, Multi Wavelength, Adjustable Rep Rate, High Peak Power, Turn-Key System
TLS-Red-Tunable-Bandwidth: Broadband Tunable Picosecond Laser TLS-Red-Tunable-Bandwidth Tunable Tunable Supercontinuum Laser, Broadband, ps pulsed, 410-1700 nm, up to 200MHz Supercontinuum Laser, Broadband Lasers, Tunable Lasers, Ultrafast Lasers, Multi Wavelength, Adjustable Rep Rate, High Peak Power, Turn-Key System
Wedge: Short Pulse Q-Switched DPSS Laser Wedge 266-3100 DPSS Laser, ns/ps pulsed, 266nm to ≈ 3µm, up to 4mJ, up to 100kHz Pulsed DPSS Lasers, Airborne Laser, Ruggedized, Adjustable Rep Rate, High Pulse Energy, High Peak Power, Low Jitter

Molecular Manipulation & Analysis Lasers provide advanced tools for the precise study and manipulation of cellular and molecular structures, enabling significant advancements in areas like cell biology, neuroscience, and drug discovery. These lasers offer exceptional control with a wide range of wavelengths, single-mode and SLM stability, and high-quality beam profiles critical for applications such as DNA sequencing, confocal microscopy, and optogenetics. Our solutions support a variety of CW and ultrafast pulsed options in customizable, integration-ready packages. Whether for in-depth molecular analysis or cellular manipulation, our lasers are designed to meet the unique demands of biophotonics research with reliability and precision.

Molecular Manipulation & Analysis Applications

Confocal Fluorescence Microscopy Lasers: Confocal microscopy is an optical technique that allows for extremely high spatial resolution imaging by placing two conjunct pinholes in the optical path. Most of the visible wavelengths can be used in confocal fluorescence microscopy, but it’s essential that all confocal fluorescence microscopy lasers (typically CW, low noise, single-mode, visible) have a high quality TEM00 beam profile.

DNA Sequencing Lasers: DNA sequencing or genome sequencing is an extremely powerful tool that allows the identification of the four basic DNA molecules adenine (A), cytosine (C), guanine (G), and thymine (T) by tagging them with fluorescence reporter molecules. Like all fluorescence applications, most of the visible wavelengths can be used in DNA sequencing, but it’s essential that all DNA sequencing lasers (typically CW, low noise, single-mode, visible) have a high quality TEM00 beam profile.

Flow Cytometry Lasers: Flow cytometry is a laser-based technology employed in cell counting, cell sorting, biomarker detection, and protein engineering. This technology is used to analyze the physical and chemical characteristics of particles in a fluid as it passes through at least one laser. Flow cytometry lasers (typically CW, low noise, single-mode, visible or IR) provide a high-quality TEM00 beam profile, low noise, and high pointing stability and power stability.

Optogenetics Lasers: Optogenetics is a biological technique that uses light to control cells in living tissue, typically neurons. While very little optical power is needed, optogenetics lasers (typically ns ps or fs pulsed, visible) are still the preferred delivery method because of their ability to be focused and targeted to specific areas of the brain.  Additionally, several wavelengths in the near-infrared region allow optogenetics lasers to be transmitted through bone and tissue eliminating the need for opening the skull.

Two-Photon Excitation Microscopy: Often called two-photon microscopy (2-photon, multi-photon, TPE microscopy), this process creates fluorescence images of live cells utilizing ultrashort pulsed lasers (typically mode-locked, fs pulsed lasers with NIR wavelengths). Compared to the usual one-photon microscopy, this method offers many benefits, such as better signal-to-noise ratio for clearer images, reduced photobleaching and phototoxicity, and deeper penetration in dense tissues.

Let Us Help

With 1000s of fielded units, and over 25 years of experience, providing OEMs, contract manufacturers, and researchers with the best laser solution for their application, our expert team is ready to help! Working with RPMC ensures you are getting trusted advice from our knowledgeable and technical staff on a wide range of laser products.  RPMC and our manufacturers are willing and able to provide custom solutions for your unique application.

If you have any questions, or if you would like some assistance please contact us. Furthermore, you can email us at info@rpmclasers.com to talk to a knowledgeable Product Manager.

Check out our Online Store: This page contains In-Stock products and an ever-changing assortment of various types of new lasers at marked-down/discount prices.

We’re experts at helping select the right configuration for you!

Component FAQs
Can I operate multiple laser diodes from the same power supply?

Can I operate multiple laser diodes from the same power supply?

The same power supply can drive multiple laser diodes if they are connected in series, but they must never be connected in parallel. When two diodes are connected in series, they will function properly as long as the compliance voltage is large enough to cover the voltage drop across each diode. For example, suppose you are trying to power two diode lasers, each with an operating voltage of 1.9 V, and connect the two in series. In that case, the pulsed or CW laser driver must have a total voltage capacity greater than 3.8 V. This configuration works because diodes share the same current when connected in series. In contrast, when two diodes are connected in parallel, the current is no longer shared between the two diodes. Get more details on the topic in this article: “Can I Operate Multiple Laser Diodes From the Same Power Supply?” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

Can laser diodes emit green, blue, or UV light?

Can laser diodes emit green, blue, or UV light?

The output wavelength of a semiconductor laser is based on the difference in energy between the valance and conduction bands of the material (bandgap energy). Since the energy of a photon is inversely proportional to its wavelength, this means that a larger bandgap energy will result in a shorter emission wavelength. Due to the relatively wide bandgap energy of 3.4 eV, gallium nitride (GaN) is ideal for the production of semiconductor optoelectronic devices, producing blue wavelength light without the need for nonlinear crystal harmonic generation. Since the mid-’90s, GaN substrates have been the common material utilized for blue LEDs. In recent years, GaN based laser technology has provided blue, green and UV laser diodes, now available in wavelengths from 375 nm to 521 nm, with output powers exceeding 100 watts. Read our article, titled “Gallium Nitride (GaN) Laser Diodes: Green, Blue, and UV Wavelengths” to learn more about GaN Based Laser Diodes, available through RPMC. Get more information from our Lasers 101, Blogs, Whitepapers, and FAQs pages in our Knowledge Center!

How long will a laser diode last?
How long will a laser diode last?

Honestly, it depends on several factors, and there is no simple chart to cover everything. Typical diode lifetimes are in the range of 25,000 to 50,000 hours. Though, there are lifetime ratings outside this range, depending on the configuration. Furthermore, there are a wide range of degradation sources that contribute to a shorter lifespan of laser diodes. These degradation sources include dislocations that affect the inner region, metal diffusion and alloy reactions that affect the electrode, solder instability (reaction and migration) that affect the bonding parts, separation of metals in the heatsink bond, and defects in buried heterostructure devices. Read more about diode lifetime and contributing factors in this article: “Understanding Laser Diode Lifetime.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What factors affect the lifetime of laser diodes?
What factors affect the lifetime of laser diodes?

There are a great many factors that can increase or decrease the lifetime of a laser diode. One of the main considerations is thermal management. Mounting or heatsinking of the package is of tremendous importance because operating temperature strongly influences lifetime and performance. Other factors to consider include electrostatic discharge (ESD), voltage and current spikes, back reflections, flammable materials, noxious substances, outgassing materials (even thermal compounds), electrical connections, soldering method and fumes, and environmental considerations including ambient temperature, and contamination from humidity and dust. Read more about these critical considerations and contributing factors in this article: “How to Improve Laser Diode Lifetime: Advice and Precautions on Mounting.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What is a laser diode?
What is a laser diode?

A Laser Diode or semiconductor laser is the simplest form of Solid-State Laser. Laser diodes are commonly referred to as edge emitting laser diodes because the laser light is emitted from the edge of the substrate. The light emitting region of the laser diode is commonly called the emitter. The emitter size and the number of emitters determine output power and beam quality of a laser diode. Electrically speaking, a laser diode is a PIN diode. The intrinsic (I) region is the active region of the laser diode. The N and P regions provide the active region with the carriers (electrons and holes). Initially, research on laser diodes was carried out using P-N diodes. However, all modern laser diodes utilize the double-hetero-structure implementation. This design confines the carriers and photons, allowing a maximization of recombination and light generation. If you want to start reading more about laser diodes, try this whitepaper “How to Improve Laser Diode Lifetime.” If you want to read more about the Laser Diode Types we offer, check out the Overview of Laser Diodes section on our Lasers 101 Page!

What is the difference between laser diodes and VCSELs?
What is the difference between laser diodes and VCSELs?

Laser Diodes and VCSELs are semiconductor lasers,  the simplest form of Solid State Lasers.  Laser diodes are commonly referred to as edge emitting laser diodes because the laser light is emitted from the edge of the substrate. The light emitting region of the laser diode is commonly called the emitter.  The emitter size and the quantity of emitters determine output power and beam quality of a laser diode. These Fabry Perot Diode Lasers with a single emission region (Emitter) are typically called laser diode chips, while a linear array of emitters is called laser diode bars. Laser diode bars typically use multimode emitters, the number of emitters per substrate can vary from 5 emitters to 100 emitters. VCSELs (Vertical Cavity Surface Emitting Laser) emit light perpendicular to the mounting surface as opposed to parallel like edge emitting laser diodes.  VCSELs offer a uniform spatial illumination in a circular illumination pattern with low speckle. If you want to read more about lasers in general, and help narrowing down the selection to find the right laser for you, check out our Knowledge Center for our Blogs, Whitepapers, and FAQ pages, as well as our Lasers 101 Page!VCSEL

What’s the difference between single transverse mode & single longitudinal mode?

What’s the difference between single transverse mode & single longitudinal mode?

Within the laser community, one of the most overused and often miscommunicated terms is the phrase “single mode.”  This is because a laser beam when traveling through air takes up a three-dimensional volume in space similar to that of a cylinder; and just as with a cylinder, a laser beam can be divided into independent coordinates each with their own mode structure.  For a cylinder we would call these the length and the cross-section, but as shown in the figure below for a laser beam, we define these as the transverse electromagnetic (TEM) plane and the longitudinal axis.   Both sets of modes are fundamental to the laser beam’s properties, since the TEM modes determine the spatial distribution of the laser beams intensity, and the longitudinal modes determine the spectral properties of the laser.  As a result, when a laser is described as being “single-mode” first you need to make sure that you truly understand which mode is being referred to.  Meaning that you must know if the laser is single transverse mode, single longitudinal mode, or both. Get all the information you need in this article: “What is Single Longitudinal Mode?” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

CW Lasers FAQs
How do I align my optical system?

How do I align my optical system?

Laser alignment can be a challenging task, but aligning a laser beam doesn’t have to be as complicated as it might seem with the right optical alignment tools and proper laser alignment techniques. Multiple optical alignment techniques have been developed over the years, utilized by technicians and engineers to simplify the alignment process. With the development of these universal laser beam alignment methods, along with some laser alignment tips and tricks, you don’t need to be a laser expert to perform your alignments with relative ease, ensuring your laser beam path is right where you want it to be and your beam is on target every time. Read our article, titled “Laser Alignment: HeNe Lasers, Methods, and Helpful Tips” to get the knowledge and advice you need for proper optical beam path alignment utilizing HeNe Lasers. Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

Should I choose multimode or single-mode for Raman spectroscopy?
Should I choose multimode or single-mode for Raman spectroscopy?

On the surface, this seems like a simple question since Raman is a nonlinear optical effect and therefore the tighter the beam can be focused the higher the conversion efficiency.  Seemingly a single-mode laser would be preferable, but in practice there are other factors that can complicate the situation. The first question you should ask yourself when considering which type of laser to choose is whether you are doing microscopy or bulk sampling.  If the answer to that question is microscopy, then you immediately should go with a single mode laser.  Since the goal of any microscopy system is to produce the highest resolution image possible, the number one consideration should be how tightly can the laser beam be focused down. However, there are several other considerations when choosing between multimode and single-mode. Learn which is best for you in this article: “Multimode vs Single-Mode Lasers for Raman Spectroscopy.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What is a CW Laser?
What is a CW Laser?

A CW or continuous-wave laser is any laser with a continuous flow of pump energy. It emits a constant stream of radiation, as opposed to a q-switched or mode-locked pulsed laser with a pulsed output beam. A laser is typically defined as having a pulse width greater than 250 ms. The first CW laser was a helium-neon (HeNe) gas laser, developed in 1960, which you can read more about in this blog “HeNe Lasers: Bright Past, Brighter Future.” If you want to read more about the types of CW Lasers we offer, check out the Overview of CW Lasers section on our Lasers 101 Page!

What is the best laser for optical surface flatness testing?
What is the best laser for optical surface flatness testing?

It is essential that the laser exhibit a high level of spectral stability, ensuring that any changes in the interference pattern are caused by features in the sample and not originating from the laser beam. In addition to spectral stability, high beam pointing stability ensures consistent measurements by mitigating any beam position drift concerning the position of the sample. Lasers with longer coherence lengths, and subsequently narrower linewidths, play an important role in determining the resolution of the measurement, as well as consideration of the wavelength used. Exhibiting both single longitudinal mode and single spatial mode has excellent benefits. To get more details on preferred laser sources for interferometry in this article: “Stable, Narrow Linewidth, CW DPSS Lasers for Precision Interferometry.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What type of laser do I need for confocal microscopy?
What type of laser do I need for confocal microscopy?

The short answer is: You have some flexibility, but the laser source should be PM fiber-coupled and have a low noise, TEM00 beam mode. The excitation bandwidth of the fluorophores used must overlap with the laser wavelength, as various fluorophores need different wavelengths. So, you may require multiple lasers, which means you’ve got a beam combining alignment challenge to tackle. One way to avoid this is through the convenience of Multi-Wavelength Beam Combiners.

If you want to learn more on the subject of confocal fluorescence microscopy, ideal laser sources, and the benefits of beam combiners, check out this white paper: “Multi-Wavelength Laser Sources for Multi-Color Fluorescence Microscopy.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What type of laser is best for Doppler LIDAR?

What type of laser is best for Doppler LIDAR?

Various LIDAR signal methods for measuring velocity have one critical requirement in common, the need for precise control over laser frequency. While a wide variety of single-frequency lasers have been used in Doppler LIDAR research, the industry as a whole has adopted single-frequency fiber lasers as the ideal light source. Fiber lasers have several advantages over traditional DPSS lasers, all of which derive from the geometry of the fiber optic itself, namely the innate ability to have an extremely long single-mode optical cavity. This geometry allows for the production of either extremely high-power, single-mode lasers producing unprecedented brightness, or extremely narrow band lasers, with near perfect single-frequency output. If you want to learn more about Doppler LIDAR, the critical considerations involved, and ideal laser sources, check out this whitepaper: “Single-Frequency Fiber Lasers for Doppler LIDAR.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What’s the difference between single transverse mode & single longitudinal mode?

What’s the difference between single transverse mode & single longitudinal mode?

Within the laser community, one of the most overused and often miscommunicated terms is the phrase “single mode.”  This is because a laser beam when traveling through air takes up a three-dimensional volume in space similar to that of a cylinder; and just as with a cylinder, a laser beam can be divided into independent coordinates each with their own mode structure.  For a cylinder we would call these the length and the cross-section, but as shown in the figure below for a laser beam, we define these as the transverse electromagnetic (TEM) plane and the longitudinal axis.   Both sets of modes are fundamental to the laser beam’s properties, since the TEM modes determine the spatial distribution of the laser beams intensity, and the longitudinal modes determine the spectral properties of the laser.  As a result, when a laser is described as being “single-mode” first you need to make sure that you truly understand which mode is being referred to.  Meaning that you must know if the laser is single transverse mode, single longitudinal mode, or both. Get all the information you need in this article: “What is Single Longitudinal Mode?” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

Pulsed Lasers FAQs
What is a Pulsed Laser?
What is a Pulsed Laser?

A pulsed laser is any laser that does not emit a continuous-wave (CW) laser beam. Instead, they emit light pulses at some duration with some period of ‘off’ time between pulses and a frequency measured in cycles per second (Hz). There are several different methods for pulse generation, including passive and active q-switching and mode-locking. Pulsed lasers store energy and release it in these pulses or energy packets. This pulsing can be very beneficial, for example, when machining certain materials or features. The pulse can rapidly deliver the stored energy, with downtime in between, preventing too much heat from building up in the material. If you would like to read more about q-switches and the pros and cons of passive vs active q-switches, check out this blog “The Advantages and Disadvantages of Passive vs Active Q-Switching,” or check out our Overview of Pulsed Lasers section on our Lasers 101 Page!

What is the best laser for LIDAR?

What is the best laser for LIDAR?

There are actually numerous laser types that work well for various LIDAR and 3D Scanning applications. The answer comes down to what you want to measure or map. If your target is stationary, and distance is the only necessary measurement, short-pulsed lasers, with pulse durations of a few nanoseconds (even <1ns) and high pulse energy are what you’re looking for. This is also accurate for 3D scanning applications (given a stationary, albeit a much closer target), but select applications can also benefit from frequency-modulated, single-frequency (narrow-linewidth) fiber lasers. If your target is moving, and speed is the critical measurement, you need a single-frequency laser to ensure accurate measurement of the Doppler shift. If you want to learn more about the various forms of LIDAR and the critical laser source requirements, check out our LIDAR page for a list of detailed articles, as well as all the LIDAR laser source products we offer. Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What is the best laser for tattoo removal?

What is the best laser for tattoo removal?

Similar to laser hair removal, laser tattoo removal utilizes a process known as selective photothermolysis to target the embedded ink in the epidermis and dermis.  Photothermolysis is the use of laser microsurgery to selectively target tissue utilizing specific wavelengths of light to heat and destroy the tissue without affecting its surroundings.  In laser tattoo removal this is accomplished by using a focused q-switched laser with a fluence of approximately 10 J/cm2, to heat the ink molecules locally.  Since the q-switched laser’s pulse duration (100 ps to 10 ns) is shorter than the thermal relaxation time of the ink molecules it prevents heat diffusion from taking place.  In addition to minimizing damage to the surrounding tissue, this rapid localized heating results in a large thermal differential, resulting in a shock wave which breaks apart the ink molecules. If you would like more details on pulsed lasers for tattoo removal applications, see our Aesthetics Lasers page here! Get more information from our Lasers 101, Blogs, Whitepapers, and FAQ pages in our Knowledge Center!

What is the difference between active and passive q-switching?
What is the difference between active and passive q-switching?

There are a wide variety of q-switch technologies, but the technique as a whole can be broken down into two primary categories of q-switches, passive and active. Active q-switches could be a mechanical shutter device, an optical chopper wheel, or spinning mirror / prism inside the optical cavity, relying on a controllable, user set on/off ability. Passive q-switches use a saturable absorber, which can be a crystal (typically Cr:YAG), a passive semiconductor, or a special dye, and automatically produce pulses based on it’s design. Both passive and active q-switching techniques produce short pulses and high peak powers, but they each have their pros and cons. When choosing between actively q-switched and passively q-switched lasers, the key is to understand the tradeoffs between cost/size and triggering/energy and decide which is best for your particular application. Read more about these tradeoffs in this article: “The Advantages and Disadvantages of Passive vs Active Q-Switching.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What type of laser is used for LIBS?
What type of laser is used for LIBS?

A laser source used for LIBS must have a sufficiently large energy density to ablate the sample in as short a time possible. Typically, pulsed DPSS lasers take center stage here. However, it’s been shown that pulsed fiber lasers can also be a great option. For example, you could utilize fiber lasers to measure detection limits as low as micrograms per gram (µg/g) for many common metals and alloys, including aluminum, lithium, magnesium, and beryllium. Analytical performances showed to be, in some cases, close to those obtainable with a traditional high-energy Nd:YAG laser. The beam quality of fiber lasers, in conjunction with longer pulse widths, resulted in significantly deeper and cleaner ablation craters. If you want to learn more about LIBS and ideal laser sources, check out either this blog: “OEM Fiber Lasers for Industrial Laser Induced Breakdown Spectroscopy,” or this blog: “Laser Induced Breakdown Spectroscopy (LIBS) in Biomedical Applications.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

Which IR laser is best for laser target designation?
Which IR laser is best for laser target designation?

There are many different types of laser designation systems used by the military today. Still, they all share the same basic functionality and outcome. At a glance, the laser requirements seem relatively straightforward. The laser needs to be invisible to the human eye, and it needs to have a programmable pulse rate. Still, when you look in more detail, many small factors add up to big problems if not appropriately addressed. Excellent divergence and beam pointing stability, low timing jitter, and rugged, low SWaP design are all critical features of a good laser designation source. Read more on these critical features in this article: “What are the Critical Laser Source Requirements for Laser Designation?” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!