Warning: DOMDocument::loadHTML(): htmlParseEntityRef: expecting ';' in Entity, line: 15 in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/header.php on line 30

Warning: DOMDocument::loadHTML(): htmlParseEntityRef: expecting ';' in Entity, line: 15 in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/header.php on line 30

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 500

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Fluence Technology Lasers

RPMC Lasers is the Exclusive Source of Fluence Technology’s Lasers in North America

Ultrafast, Highly Ruggedized, Truly All-Fiber Laser Design

          • All-fiber, SESAM-free technology achieves unprecedented stability & resilience
          • Extreme shock & vibration resilience in harsh environments

Expert Performance for Advanced Micromachining, Glass Processing & More

          • Highest quality material processing from ceramics to metals & polymers
          • Precision glass cutting, welding & surface texturing

Extensive application lab capabilities

          • In-house lab for feasibility studies and demonstrations
          • Laser process design & integration support to meet your specific requirements

Your custom fiber optic solution awaits!

What sets Fluence Technology apart?

Unique Truly All-Fiber Design – Minimum Servicing & Enhanced Resilience
          • Ultra-fast, high-performance femtosecond lasers designed with user in mind
          • SESAM-free, all-fiber design provides a robust, stable & frustration-free laser
          • All units tested for extreme shock & vibration resilience in harsh environments
          • High-quality product with a lifetime extending well over the warranty period
          • All-fiber, modular design provides a maintenance-free experience
Decades of Experience Providing Expert Application Performance 
          • High-power and stability for a wide range of advanced applications
          • Specializing in advanced glass processing: cutting, welding & surface texturing
          • Ideal for consumer electronics, medical devices & semiconductor manufacturing
          • Robust design makes their lasers perfect for industrial or machining applications
          • Precision cutting, drilling & structuring various metals, polymers & ceramics
State-of-the-Art Application Lab for Testing & Process Design
          • Micromachining station equipped w/ high-precision automated systems & advanced fs lasers
          • Comprehensive testing capabilities: Cutting, microdrilling, marking, structuring, welding & more
          • Capabilities to research new micromachining techniques w/ innovative process development
          • Focuses on new process development for consumer electronics, medical devices & other industries
          • Works w/ SCANLAB, ACS Motion Control & Direct Machining Control for enhanced process control

various glass features cleanly cut with advanced femtosecond lasers

red match head that has been machined with a femtosecond laser cold ablation no HAZ

fluorescing cells image from two photon excited fluorescence femtosecond laser application

Fluence unites individuals from diverse industrial and academic backgrounds, all of whom have experienced the challenges of using commercial laser systems. Their collective frustration with the constant need for adjustments, alignments, and repairs led them to develop a robust, passively stable laser technology. This innovation aims to allow users to focus on their work without the hassle of maintenance. Fluence’s femtosecond lasers are tested with state-of-the-art diagnostics, including compact real-time autocorrelators and spectral phase interferometers. These systems are rigorously tested in environmental chambers and on vibration platforms to ensure exceptional performance in harsh conditions from various temperatures to extreme shock & vibration prone environments. The lasers utilize all-fiber technology with passive interference for mode-locking, eliminating degradable components like SESAM, and reducing maintenance needs. The modular design facilitates easy servicing, while spliced fiber construction prevents misalignment and isolates the light from humidity, ensuring intrinsic robustness.

Let us help find the right solution for you!

Why choose Fluence Technology?

Fluence was established by four experts, each one specializing in their own complementary area, but all of them share the same passion for technology and willingness to develop unique ultrafast systems that would be robust, stable, and frustration-free. Their goal was achieved thanks to their hard work and dedication to ultrafast fiber technology from as early as 2003. Those 13 years of research and development before Fluence was officially founded, had let them find a way to make the femtosecond lasers extremely stable and immune to shock and vibration. With the unique all-fiber technology, they are devoted to filling the long-standing market gap of truly service-free femtosecond lasers.

Nowadays, Fluence consists of a team of highly skilled engineers and scientists with the drive to make a difference and go the extra mile. Fluence is a team of experts in various fields like laser systems, photonics, embedded systems, software, simulation and modeling, electronics, micromachining, ultrafast spectroscopy, and more.

Let Us Help

With 1000s of fielded units, and over 25 years of experience, providing OEMs, contract manufacturers, and researchers with the best laser solution for their application, our expert team is ready to help! Working with RPMC ensures you are getting trusted advice from our knowledgeable and technical staff on a wide range of laser products.  RPMC and our manufacturers are willing and able to provide custom solutions for your unique application.

Check out our Online Store: This page contains In-Stock products and an ever-changing assortment of various types of new lasers at marked-down/discount prices.

We’re experts at helping select the right configuration for you!

Visit Fluence’s Website

Pulsed Lasers FAQs
What is a Pulsed Laser?
What is a Pulsed Laser?

A pulsed laser is any laser that does not emit a continuous-wave (CW) laser beam. Instead, they emit light pulses at some duration with some period of ‘off’ time between pulses and a frequency measured in cycles per second (Hz). There are several different methods for pulse generation, including passive and active q-switching and mode-locking. Pulsed lasers store energy and release it in these pulses or energy packets. This pulsing can be very beneficial, for example, when machining certain materials or features. The pulse can rapidly deliver the stored energy, with downtime in between, preventing too much heat from building up in the material. If you would like to read more about q-switches and the pros and cons of passive vs active q-switches, check out this blog “The Advantages and Disadvantages of Passive vs Active Q-Switching,” or check out our Overview of Pulsed Lasers section on our Lasers 101 Page!

What is the best laser for LIDAR?

What is the best laser for LIDAR?

There are actually numerous laser types that work well for various LIDAR and 3D Scanning applications. The answer comes down to what you want to measure or map. If your target is stationary, and distance is the only necessary measurement, short-pulsed lasers, with pulse durations of a few nanoseconds (even <1ns) and high pulse energy are what you’re looking for. This is also accurate for 3D scanning applications (given a stationary, albeit a much closer target), but select applications can also benefit from frequency-modulated, single-frequency (narrow-linewidth) fiber lasers. If your target is moving, and speed is the critical measurement, you need a single-frequency laser to ensure accurate measurement of the Doppler shift. If you want to learn more about the various forms of LIDAR and the critical laser source requirements, check out our LIDAR page for a list of detailed articles, as well as all the LIDAR laser source products we offer. Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What is the best laser for tattoo removal?

What is the best laser for tattoo removal?

Similar to laser hair removal, laser tattoo removal utilizes a process known as selective photothermolysis to target the embedded ink in the epidermis and dermis.  Photothermolysis is the use of laser microsurgery to selectively target tissue utilizing specific wavelengths of light to heat and destroy the tissue without affecting its surroundings.  In laser tattoo removal this is accomplished by using a focused q-switched laser with a fluence of approximately 10 J/cm2, to heat the ink molecules locally.  Since the q-switched laser’s pulse duration (100 ps to 10 ns) is shorter than the thermal relaxation time of the ink molecules it prevents heat diffusion from taking place.  In addition to minimizing damage to the surrounding tissue, this rapid localized heating results in a large thermal differential, resulting in a shock wave which breaks apart the ink molecules. If you would like more details on pulsed lasers for tattoo removal applications, see our Aesthetics Lasers page here! Get more information from our Lasers 101, Blogs, Whitepapers, and FAQ pages in our Knowledge Center!

What is the difference between active and passive q-switching?
What is the difference between active and passive q-switching?

There are a wide variety of q-switch technologies, but the technique as a whole can be broken down into two primary categories of q-switches, passive and active. Active q-switches could be a mechanical shutter device, an optical chopper wheel, or spinning mirror / prism inside the optical cavity, relying on a controllable, user set on/off ability. Passive q-switches use a saturable absorber, which can be a crystal (typically Cr:YAG), a passive semiconductor, or a special dye, and automatically produce pulses based on it’s design. Both passive and active q-switching techniques produce short pulses and high peak powers, but they each have their pros and cons. When choosing between actively q-switched and passively q-switched lasers, the key is to understand the tradeoffs between cost/size and triggering/energy and decide which is best for your particular application. Read more about these tradeoffs in this article: “The Advantages and Disadvantages of Passive vs Active Q-Switching.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What type of laser is used for LIBS?
What type of laser is used for LIBS?

A laser source used for LIBS must have a sufficiently large energy density to ablate the sample in as short a time possible. Typically, pulsed DPSS lasers take center stage here. However, it’s been shown that pulsed fiber lasers can also be a great option. For example, you could utilize fiber lasers to measure detection limits as low as micrograms per gram (µg/g) for many common metals and alloys, including aluminum, lithium, magnesium, and beryllium. Analytical performances showed to be, in some cases, close to those obtainable with a traditional high-energy Nd:YAG laser. The beam quality of fiber lasers, in conjunction with longer pulse widths, resulted in significantly deeper and cleaner ablation craters. If you want to learn more about LIBS and ideal laser sources, check out either this blog: “OEM Fiber Lasers for Industrial Laser Induced Breakdown Spectroscopy,” or this blog: “Laser Induced Breakdown Spectroscopy (LIBS) in Biomedical Applications.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

Which IR laser is best for laser target designation?
Which IR laser is best for laser target designation?

There are many different types of laser designation systems used by the military today. Still, they all share the same basic functionality and outcome. At a glance, the laser requirements seem relatively straightforward. The laser needs to be invisible to the human eye, and it needs to have a programmable pulse rate. Still, when you look in more detail, many small factors add up to big problems if not appropriately addressed. Excellent divergence and beam pointing stability, low timing jitter, and rugged, low SWaP design are all critical features of a good laser designation source. Read more on these critical features in this article: “What are the Critical Laser Source Requirements for Laser Designation?” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!