Warning: DOMDocument::loadHTML(): htmlParseEntityRef: expecting ';' in Entity, line: 15 in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/header.php on line 30

Warning: DOMDocument::loadHTML(): htmlParseEntityRef: expecting ';' in Entity, line: 15 in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/header.php on line 30

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 500

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Oxxius Lasers

RPMC Lasers is the Exclusive Source for Oxxius’ Lasers in North America

High-Quality, Low-Noise CW Laser Diode & DPSS Modules

      • Proprietary, alignment-free monolithic resonator at the heart of its DPSS lasers
      • CW/Modulated, SLM or high-power diode modules & wavelength combiners
      • Fast TTL and analog modulation with optional clean-up filter

Wide Range of Wavelengths & Powers w/ Integration Flexibility

      • Available in the wavelength range of 375nm to 1064nm
      • High-power laser sources in an integrated laser head

Compact and Customizable Designs w/ Advanced Combiner Capabilities

      • Compact, highly customizable, flexible all-in-one laser modules/combiners
      • Up to 7 combined wavelengths with direct modulation on every source

Your ideal CW module solution awaits!

Why Choose Oxxius?

High-Quality, Low-Noise CW Laser Diode & DPSS Modules
          • DPSS laser features alignment-free, monolithic resonator technology
          • Eliminate alignment issues, ensure reliability & long-term stability
          • CW/Modulated, SLM or high-power diode module options – Multi-wavelength beam combiners
          • Exceptional spectral and spatial beam characteristics, and market-leading power levels
          • Excellent wavelength stability with no drift or variation upon restart
          • High-performance features: TTL/analog modulation, optional clean-up filter, adv. beam quality & more
Wide Range of Wavelengths & Powers w/ Integration Flexibility
          • Available in the wavelength range of UV – 375nm to NIR – 1064nm
          • Advanced features: analog/digital modulation, fiber coupling, isolators & SLM stabilized options
          • Compact laser module available in turn-key or OEM versions
          • Dedicated software, USB/RS232 interfaces & external controller w/ power display
Compact & Customizable Designs w/ Advanced Combiner Capabilities
          • Innovative architecture designed for compactness, reliability & cost to performance ratio
          • Flexible, all-in-one laser modules & combiners – Custom solutions tailored to your needs
          • Combiner configurations up to 7 unique beam powers/wavelengths -Up to 4 outputs
          • Advanced options: motorized filters, adj. split power for light sheet, fast switching for FRAP & more

Image Confocal Microscopy

illuminated cell, visualized through laser fluorescence microscopy

illustrative picture to represent Raman spectroscopy showing white light split into it's component colors

Oxxius is a leader in the design and manufacture of high-quality continuous-wave (CW) DPSS and diode laser modules, delivering innovative solutions across a wide range of applications. Available in wavelengths from 375 nm to 1064 nm, Oxxius lasers provide exceptional performance with advanced features like analog/digital modulation, fiber coupling, and combiner capabilities that integrate up to 7 wavelengths in a single housing. Their proprietary alignment-free monolithic resonator technology ensures unmatched reliability, with no drift against temperature variations and precise wavelength stability. Oxxius’ products are compact, customizable, and designed to meet the specific needs of biophotonics, metrology, spectroscopy, and other demanding fields. Whether in turnkey or OEM versions, Oxxius offers flexible, low-noise laser solutions with advanced control interfaces and modular options, making them a preferred partner for clients seeking cutting-edge CW laser technology.

Let us help find the right solution for you!

Picture Part Number Wavelength (nm) Description Type
LXC-Combiner: 4 or 6 Wavelength Laser Module Combiners LXC-Combiner Multiple Wavelength Options Laser Combiner, Single mode, up to 6 Wavelengths, 375-1064nm, up to 500mW LD Module, CW DPSS Lasers, Narrow Linewidth, Long Coherence Length, Single Longitudinal Mode (SLM), Multi Wavelength, Collimated Beam, Fiber-Coupled, Turn-Key System, Customizable
LXX-IR-HPE: Infrared High-Power Laser Diode Module LXX-IR-HPE 750, 785, 830, 940 Laser Module, Multimode, Infrared, 785-940nm, up to 1W LD Module, Collimated Beam, Fiber-Coupled, Customizable
LXX-IR-SLM: Infrared SLM Laser Module LXX-IR-SLM 785, 830, 1064 Laser Module, Stabilized, Infrared, 785-1064nm, up to 300mW LD Module, CW DPSS Lasers, Narrow Linewidth, Long Coherence Length, Single Longitudinal Mode (SLM), Collimated Beam, Fiber-Coupled, Customizable
LXX-IR-SM: Infrared Single Mode Laser Diode Module LXX-IR-SM 785, 808, 830, 915, 980, 1064 Laser Module, Single mode, Infrared, 785-1064nm, up to 500mW LD Module, CW DPSS Lasers, Collimated Beam, Fiber-Coupled, Customizable
LXX-UV-HPE: Ultraviolet High-Power Laser Diode Module LXX-UV-HPE 375 Laser Module, Multimode, Ultraviolet, 375nm, up to 200mW LD Module, Collimated Beam, Fiber-Coupled, Customizable
LXX-UV-SM: Ultraviolet Single Mode Laser Diode Module LXX-UV-SM 375, 395 Laser Module, Single mode, Ultraviolet, 375-395nm, up to 120mW LD Module, Collimated Beam, Fiber-Coupled, Customizable
LXX-VIS-HPE: Visible High Power Laser Diode Module LXX-VIS-HPE 405, 450, 473, 488, 520, 638, 750 Laser Module, Multimode, Visible, 405-750nm, up to 1.2W LD Module, Collimated Beam, Fiber-Coupled, Customizable
LXX-VIS-SLM: Visible SLM Laser Module LXX-VIS-SLM 532, 553, 561, 633 Laser Module, Stabilized, Visible, 532-633nm, up to 300mW LD Module, CW DPSS Lasers, Narrow Linewidth, Long Coherence Length, Single Longitudinal Mode (SLM), Collimated Beam, Fiber-Coupled, Customizable
LXX-VIS-SM: Visible Single Mode Laser Diode Module LXX-VIS-SM 405, 415, 445, 450, 458, 473, 488, 505, 515, 532, 553, 561, 607, 633, 638, 640, 642, 647, 660, 730 Laser Module, Single mode, Visible, 405-730nm, up to 500mW LD Module, CW DPSS Lasers, Collimated Beam, Fiber-Coupled, Customizable

What sets Oxxius apart?

Oxxius is a market leader in the design and manufacturing of advanced continuous-wave DPSS and diode laser modules. Available in the wavelength range of 375nm to 1064nm, these compact and flexible CW modules target several applications in the fields of biophotonics, metrology, spectroscopy, and other analytics and instrumentation applications. The CW laser modules offer advanced features such as analog and digital modulation, fiber coupling, isolators, as well as combiner configurations that can house 4 to 6 CW units of various powers and wavelengths in a common housing and a common GUI interface. The flexibility of design, and disruptive innovations developed by the talented team at Oxxius, make them a preferred partner for our CW laser clientele.

Let Us Help

With 1000s of fielded units, and over 25 years of experience, providing OEMs, contract manufacturers, and researchers with the best laser solution for their application, our expert team is ready to help! Working with RPMC ensures you are getting trusted advice from our knowledgeable and technical staff on a wide range of laser products.  RPMC and our manufacturers are willing and able to provide custom solutions for your unique application.

Check out our Online Store: This page contains In-Stock products and an ever-changing assortment of various types of new lasers at marked-down/discount prices.

We’re experts at helping select the right configuration for you!

Visit Oxxius’ Website 

CW Lasers FAQs
How do I align my optical system?

How do I align my optical system?

Laser alignment can be a challenging task, but aligning a laser beam doesn’t have to be as complicated as it might seem with the right optical alignment tools and proper laser alignment techniques. Multiple optical alignment techniques have been developed over the years, utilized by technicians and engineers to simplify the alignment process. With the development of these universal laser beam alignment methods, along with some laser alignment tips and tricks, you don’t need to be a laser expert to perform your alignments with relative ease, ensuring your laser beam path is right where you want it to be and your beam is on target every time. Read our article, titled “Laser Alignment: HeNe Lasers, Methods, and Helpful Tips” to get the knowledge and advice you need for proper optical beam path alignment utilizing HeNe Lasers. Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

Should I choose multimode or single-mode for Raman spectroscopy?
Should I choose multimode or single-mode for Raman spectroscopy?

On the surface, this seems like a simple question since Raman is a nonlinear optical effect and therefore the tighter the beam can be focused the higher the conversion efficiency.  Seemingly a single-mode laser would be preferable, but in practice there are other factors that can complicate the situation. The first question you should ask yourself when considering which type of laser to choose is whether you are doing microscopy or bulk sampling.  If the answer to that question is microscopy, then you immediately should go with a single mode laser.  Since the goal of any microscopy system is to produce the highest resolution image possible, the number one consideration should be how tightly can the laser beam be focused down. However, there are several other considerations when choosing between multimode and single-mode. Learn which is best for you in this article: “Multimode vs Single-Mode Lasers for Raman Spectroscopy.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What is a CW Laser?
What is a CW Laser?

A CW or continuous-wave laser is any laser with a continuous flow of pump energy. It emits a constant stream of radiation, as opposed to a q-switched or mode-locked pulsed laser with a pulsed output beam. A laser is typically defined as having a pulse width greater than 250 ms. The first CW laser was a helium-neon (HeNe) gas laser, developed in 1960, which you can read more about in this blog “HeNe Lasers: Bright Past, Brighter Future.” If you want to read more about the types of CW Lasers we offer, check out the Overview of CW Lasers section on our Lasers 101 Page!

What is the best laser for optical surface flatness testing?
What is the best laser for optical surface flatness testing?

It is essential that the laser exhibit a high level of spectral stability, ensuring that any changes in the interference pattern are caused by features in the sample and not originating from the laser beam. In addition to spectral stability, high beam pointing stability ensures consistent measurements by mitigating any beam position drift concerning the position of the sample. Lasers with longer coherence lengths, and subsequently narrower linewidths, play an important role in determining the resolution of the measurement, as well as consideration of the wavelength used. Exhibiting both single longitudinal mode and single spatial mode has excellent benefits. To get more details on preferred laser sources for interferometry in this article: “Stable, Narrow Linewidth, CW DPSS Lasers for Precision Interferometry.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What type of laser do I need for confocal microscopy?
What type of laser do I need for confocal microscopy?

The short answer is: You have some flexibility, but the laser source should be PM fiber-coupled and have a low noise, TEM00 beam mode. The excitation bandwidth of the fluorophores used must overlap with the laser wavelength, as various fluorophores need different wavelengths. So, you may require multiple lasers, which means you’ve got a beam combining alignment challenge to tackle. One way to avoid this is through the convenience of Multi-Wavelength Beam Combiners.

If you want to learn more on the subject of confocal fluorescence microscopy, ideal laser sources, and the benefits of beam combiners, check out this white paper: “Multi-Wavelength Laser Sources for Multi-Color Fluorescence Microscopy.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What type of laser is best for Doppler LIDAR?

What type of laser is best for Doppler LIDAR?

Various LIDAR signal methods for measuring velocity have one critical requirement in common, the need for precise control over laser frequency. While a wide variety of single-frequency lasers have been used in Doppler LIDAR research, the industry as a whole has adopted single-frequency fiber lasers as the ideal light source. Fiber lasers have several advantages over traditional DPSS lasers, all of which derive from the geometry of the fiber optic itself, namely the innate ability to have an extremely long single-mode optical cavity. This geometry allows for the production of either extremely high-power, single-mode lasers producing unprecedented brightness, or extremely narrow band lasers, with near perfect single-frequency output. If you want to learn more about Doppler LIDAR, the critical considerations involved, and ideal laser sources, check out this whitepaper: “Single-Frequency Fiber Lasers for Doppler LIDAR.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What’s the difference between single transverse mode & single longitudinal mode?

What’s the difference between single transverse mode & single longitudinal mode?

Within the laser community, one of the most overused and often miscommunicated terms is the phrase “single mode.”  This is because a laser beam when traveling through air takes up a three-dimensional volume in space similar to that of a cylinder; and just as with a cylinder, a laser beam can be divided into independent coordinates each with their own mode structure.  For a cylinder we would call these the length and the cross-section, but as shown in the figure below for a laser beam, we define these as the transverse electromagnetic (TEM) plane and the longitudinal axis.   Both sets of modes are fundamental to the laser beam’s properties, since the TEM modes determine the spatial distribution of the laser beams intensity, and the longitudinal modes determine the spectral properties of the laser.  As a result, when a laser is described as being “single-mode” first you need to make sure that you truly understand which mode is being referred to.  Meaning that you must know if the laser is single transverse mode, single longitudinal mode, or both. Get all the information you need in this article: “What is Single Longitudinal Mode?” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!