Pulsed Lasers

sleek, modern, silver colored pulsed DPSS laser housing with red, green, and blue beam output ports

RPMC Lasers provides a diverse range of standard and custom pulsed lasers from ultrafast fiber to ultra-low SWaP MIL-spec lasers. These lasers cover nanosecond to femtosecond pulse widths, UV to MWIR wavelengths, energy levels from nanojoules to hundreds of millijoules, and repetition rates from single-shot up to 80 MHz.

Let us help you select the right configuration!

Filters Reset

Type

Wavelength Selection

Power Selection

Energy Selection

Pulse Width Selection

Rep Rate Selection

Series

FL-P Series

1um 1.5um Pulsed Fiber LasersThe FL-P series of pulsed fiber lasers is manufactured to Telcordia standards and is suitable for various applications with average powers up to 5W at 1um and 1.5um, peak powers up to 25kW, and pulse widths in the range of 400ps to 50ns. Available in both OEM and Turnkey formats, this series offers a variety of standard and custom configurations. Available options include pulse monitoring, int/ext triggering, TTL or LVDS input signals, extended operating temperature range, and a robust design.

Aero Series

The Aero Series is a high-energy, nanosecond pulsed DPSS laser, available at 266, 355, 532, and 1064nm, with up to 10W output power at 1064 (up to 200 mJ with water-cooling). This series provides unparalleled precision and accuracy in even the most challenging environments, ideal for LIBS, spectroscopy, and atmospheric LIDAR applications. All models come enclosed in an air-cooled, extremely compact and ruggedized, thermo-mechanically stable, low SWaP single unit platform, with options for air- or water-cooling, a range of add-ons, and even complete customization to fit your exact needs. Upon request, customized models undergo severe vibration and qualification tests for operation in space.

Airtrac-MIL Series

AIRTRAC-LD

The AIRTRAC-MIL series is a ruggedized, high-shock, ultra-compact, actively q-switched, low-SWaP, DPSS laser, available with up to 70 mJ @ 532 & 1064 nm. Configurations for laser designation are available in a complete system weighing less than 1 lb. The athermal design of the AIRTRAC ensures high laser pulse energy, and stable performance over the full temperature range with low beam divergence. 

Blueback Series

The Blueback series of compact, state-of-the-art, real-time, ultrashort laser pulse characterization devices are designed to provide high-resolution measurements for ultrafast oscillators and amplifiers. With input specifications including 80 fs – 4 ps pulses, 1 kHz – 200 MHz rep. rate, and 1010 nm – 1060 nm wavelength range, it offers unparalleled precision in ultra-short pulse measurements, providing flexibility for a wide range of laser characterization. A high-resolution spectrometer provides detailed spectral information about their pulses, while real-time data acquisition & display help users monitor and adjust processes on the fly.

CEUV Series

R0Z2-Image-Compact-Efficient-UV-LaserThe CEUV series is a commercial line of compact and efficient DPSS laser sources, capable of operating over a wide range of pulsing conditions (duty-cycle and PRF), in a low SWaP package, with average power up to ≈5W @ 266nm, 10W @ 355nm or 532nm, 20W @ 1064nm. This series of DPSS lasers provides a combination of compact, efficient, and high-power performance in a rugged design suitable for harsh environments and airborne applications. The design has been tested in brassboard hardware and a prototype is being developed.

ER Series

The ER Series offers an ultra-compact, ultra-low SWaP, and efficient solution for those seeking high-quality diode-pumped lasers for lightweight, handheld, and portable laser range finding applications. These lasers operate at an “eye-safe” wavelength of 1.5 µm and deliver high pulse energy up to 200 µJ with a 4 ns pulse width and repetition rates from single-shot up to 10Hz with optional burst mode. The ER Series is designed with a focus on high pulse energy, short pulse width, efficient operation, and long lifetime reliability with a 10M shot lifetime rating.

Halite 2 Series

The Halite 2 series is a compact, single-box, all-fiber femtosecond laser designed to meet the most demanding applications in neuroscience, biophotonics, microscopy, and engineering. With pulses as short as <250 fs (< 100 fs op.), average power over 2 W at 1030 nm, and the option of second harmonic at 515 nm, it is an irreplaceable tool in every lab that needs a reliable, turn-key, ultrafast light source. Thanks to its unique construction and SESAM-free technology, it is a cost-effective solution that provides high pulse energy (over 100 nJ), excellent beam quality, and easy integration.

Harmony Series

The Harmony series is a single-box optical parametric amplifier that converts ultrafast pulses from Ytterbium-based lasers into broadly tunable pulses with wavelengths ranging from 210 nm to > 10 µm. With intuitive, user-friendly PC software, an integrated mini spectrometer enables automatic tuning from 315 to 2600 nm. Designed to operate from a single pulse up to 300kHz rep. rate with pump pulse energy from 30 µJ to 200 µJ, Harmony is compatible with all Ytterbium-based femtosecond lasers, but it works best with the Jasper series: the Jasper X0 & Jasper Flex lasers featuring exceptional beam-pointing stability.

Iris Series

rendering of a CAD drawing of a compact, modern, OEM, DPSS laser housing

The Iris Series is a line of low SWaP, air-cooled, nanosecond pulsed DPSS lasers at 447nm (blue) and 671nm (red), designed for air-to-ground & air-to-sea LIDAR, aerosol detection, and communications (blue wavelength’s exhibit high transmission through water and clouds), medical applications, and special marking applications. The Iris Series offers powerful and flexible lasers. With adjustable pulse width (15-50 ns) and rep. rate (50-100 kHz), an easily integrated, compact, all-in-one design, and optional add-ons, these lasers are ready to tackle demanding applications.

Jasper Series

The Jasper series is a diverse set of high-performance femtosecond fiber lasers providing different solutions based on a standard technology. The series includes the high-power Jasper X0 (200 µJ pulse energy / 60 W average power), the compact Jasper Micro (5 µJ pulse energy / 7 W average power) in a space-saving design, and the Jasper Flex for microprocessing (30 µJ pulse energy). Each model provides a fast warm-up time, long-term stability, and hands-free operation. Whether you need high power, compactness, or specific processing capabilities, the Jasper series has a solution.

Jenlas Fiber ns

The JenLas Fiber ns series is a versatile line of fiber lasers designed for OEM integrators, researchers, and applications specialists working with material processing applications. Available in 20, 30, 55, and 100W power configurations, this air-cooled laser series boasts reliable, industry-tested fiber laser technology and an adjustable pulse length. With pulse duration settings ranging from 50 to 200 nanoseconds and peak pulse powers of up to 8kW, this series offers improved performance and extended control capabilities, allowing for pulse repetition rates and pulse lengths to be changed by choosing different modes. The JenLas Fiber ns series is available with a complete set of customizable accessories, including laser controllers, beam expanders, and more.

KAUKAS Series

The KAUKAS series is a compact, low-SWaP line of 1.54µm “eye-safe” Er:glass lasers. These nanosecond pulsed lasers feature a compact design that makes them suitable for integration into handheld, portable devices. The lasers deliver high pulse energy, repetition rates up to 5Hz, less than 3% energy stability, and a high-quality TEM00 beam. With configurable and customizable options, these features make the KAUKAS series a versatile choice for various applications such as LIDAR & laser ranging, LIBS, metrology, and instrumentation.

Lampo Series

Image of a modern OEM laser housing made of high-grade aluminum, long silver rectangle body with fan slits, output window and stickersThe Lampo Series is a line of compact ultrafast lasers that deliver megawatt-level ps laser pulses at a selectable PRR from 50 kHz to 40 MHz. Available in IR (1064 nm), SHG (532 nm), and Deep-UV (266 nm) versions (355nm by request), the series offers pulse durations < 70 ps and average power up to 20W, 10W, and 1.5W respectively. With pulse energy up to 250uJ, 150uJ, and 30uJ, these lasers are ideal for a wide range of scientific, industrial, defense, medical, biological, and LIDAR applications. Built into a rugged, air-cooled single-unit laser head, these lasers are easy to operate and integrate, making them a valuable tool for sophisticated laser systems and lab applications.

MicroMake Series

The MicroMake Series is a fully-integrated, compact, sub-ns DPSS laser micromachining system for high precision and resolution applications. A flexible platform at 532 & 266 nm, with >40 kW of peak power and processing speeds up to 100mm/second, the system includes all the needed devices for direct laser micro-processing in a single, monolithic, air-cooled configuration. Equipped with a live microscope, alignments and in-process quality checks are a breeze. All these features perfectly suit various materials utilized in microelectronic circuits, displays fabrication and correction, biomedical device machining and optical substrates microprocessing.

neoMOS Series

neoMOS 700fsThe neoMOS ultrashort pulse laser series is a reliable, low-maintenance system designed for 24/7 industrial use. The ultra-compact laser head has the smallest footprint available and can be customized for a range of laser parameters, allowing easy integration and flexibility with various demanding processing applications, including glasses and plastics. It offers pulse widths from 700fs to 70ps, repetition rates from single-shot to 80MHz, up to 500µJ pulse energy, average output powers up to 100W, multi-megawatt peak powers, and perfect TEM00 beam quality @ 1064nm.

Nimbus Series

rendering of a CAD drawing of a compact, modern, OEM, DPSS laser housing

The Nimbus Series is a line of highly compact, air-cooled (water-cooled option), short nanosecond (770 nm) and picosecond (1064 nm) pulsed DPSS lasers with high peak power & high energy pulses, designed for photoacoustic flow cytometry (PAFC), but also useful for LIDAR, material processing, and medical applications. NIR wavelengths provide increased tissue penetration, and particularly at 770 nm, the Nimbus is perfect for photodynamic therapy (PDT) and photobiomodulation (PBM) applications. Low pulse jitter reduces variations in trigger delay, and stable energy output ensures consistent results for measurement or processing. 

Nps Series

image of a sleek tunable laser platform

The NPS series of ultrafast, picosecond pulsed, narrowband lasers combine the air-cooled compactness & ruggedness of fiber lasers with the spectral purity of the DPSS design, providing the ultimate solution for OEM integrators and researchers working with nonlinear optics applications like OPO pumping and narrowband Raman spectroscopy. These lasers are available at 355, 532, and 1064nm (tunable option from 750-1800nm), with up to 10W average output power, 7ps pulse width, and are passively q-switched up to 80MHz rep. rate. The transform-limited operation, with a narrow spectral width of <0.1nm, and accurate central wavelengths make these lasers a suitable candidate for highly efficient amplification. Optional add-ons and customization available.

Onda Series

Onda 532nm: 532nm High Energy Laser

The Onda series is a DPSS nanosecond OEM industrial laser solution, designed for high-end applications requiring excellent beam quality and high peak power in metals, glass, plastics, and various delicate and hard materials. This compact, air-cooled, and easy-to-use single unit laser series allows for straightforward integration, is available in wavelengths of 266, 355, 532, and 1064nm, and provides a superior performance to cost ratio. The Onda series’ internal optical layout and accurate temperature management enable high output energies without compromising the lifetime of the THG and FHG stages. Many optional add-ons and customization options.

One Series

One-1030-100: 1030nm Miniature Q-Switched Laser

The One Series is an ultra-compact, rugged, versatile, nanosecond pulsed (up to 200µJ), passive q-switch laser series designed for OEM integrators and application specialists working with industrial and portable applications. These lasers provide sufficient peak power for extremely high-quality metal & plastic marking in compact & portable marking systems or for airborne LIDAR. With its compact & efficient contact-cooled package, attractive pricing, optional CW operation with up to 4 W average power, and configurable options & add-ons, this 1030nm series offers easy, flexible integration possibilities and exceptional, cost-effective performance for a range of applications.

Q-DOUBLE Series

sleek, modern, light grey colored DPSS laser housingThe Q-DOUBLE series is a DPSS, air-cooled, q-switched laser at 1064 or 1053 nm, designed to produce two pulses with variable temporal separation for PIV, LIBS, and other applications. The Q-DOUBLE can be configured for up to 160 mJ pulse energy @ 10 Hz or up to 40 mJ @ 100 Hz. The innovative laser design integrates all electronics (except power adapter) into the housing, resulting in a compact, user-friendly, turnkey, and air-cooled (water-free) system requiring little maintenance. User-friendly web-based GUI allows remote monitoring, control, and support from any computer or even a smartphone. Optional add-ons include built-in 2nd, 3rd, or 4th harmonic generator, built-in attenuator, energy monitor, and optional short cavity version.

Q-SHIFT Series

Q-Shift SeriesThe Q-SHIFT series of Q-switched DPSS lasers is designed for researchers and application specialists working in micromachining, dermatology, LIDAR, time-resolved laser spectroscopy, and LIBS applications. With its built-in nonlinear wavelength conversion stage, this series can produce unconventional DPSS wavelengths: 1163, 1177, 1300, 1317, 1551 & 1571 nm. The optional harmonics generator can generate up to the 4th harmonic for each fundamental wavelength, providing even more versatility. This series can produce up to 40mJ/1W @ 1163nm with up to 100Hz repetition rate.

Q-Spark

Quantas-Q-SPARK-266: High energy, compact, nanosecond, DPSS laser

The Q-SPARK series is an air-cooled, diode-pumped, Q-switched laser designed for researchers and application specialists working with ablation, LIDAR, remote sensing, and LIBS applications. The laser produces sub-nanosecond or nanosecond pulses with peak power up to 20 MW and pulse energies up to 20 mJ, making it ideal for a wide range of applications. With a short pulse (<800 ps to <2 ns), compact air-cooled package, and innovative water-free laser crystal end-pumping technology, the Q-SPARK series delivers high-quality, low divergence, Gaussian-like laser beams.

Q-TUNE-G Series

sleek, modern, light grey colored OPO & DPSS laser housing

The Q-TUNE-G series is a highly advanced air-cooled, tunable wavelength laser. It offers hands-free, automated tuning from 680 to 2300 nm, delivering up to 11 mJ pulse energy in the near-IR range. With a <10 cm-¹ linewidth and up to 100 Hz pulse repetition rate, it’s ideal for photoacoustic imaging, non-linear spectroscopy, and more. The user-friendly GUI and microprocessor control ensure ease of use, while the water-free, air-cooled design optimizes performance. The Q-TUNE-G series sets a new standard in precision and efficiency for researchers across disciplines.

Q-TUNE-HR Series

sleek, modern, light grey colored OPO & DPSS laser housingThe Q-TUNE-HR series is a high repetition rate OPO producing a tunable wavelength range from ≈ 750 – 1800 nm and up to 100 kHz pulse repetition rate, the perfect coherent light source for micromachining, Raman spectroscopy, microscopy, and remote sensing applications. Q-TUNE-HR requires an external pump source with > 350 μJ pulse energy and 5 – 7 ns FWHM pulse duration @ 532 nm for operation: pulse repetition rate can be in 10 – 100 kHz range and acceptable pump power in the 3.5 – 30 W range. By default OPO is optimized to produce maximum output in 1200 – 1800 nm range (optional: 750 – 950 nm). In addition to the tunable range, the pump laser wavelength is accessible through a convenient bypass port.

Q-TUNE-IR Series

Q-TUNE-IRThe Q-TUNE-IR series is the perfect high peak power, coherent DPSS light source for researchers with infrared spectroscopy applications. This series uses an Optical Parametric Oscillator (OPO) to produce a tunable wavelength of 1380–4500nm (<10 cm-1 linewidth), achieving > 15mJ of pulse energy at the peak of the tuning curve. The Q-TUNE-IR requires little maintenance, with all laser electronics integrated into the housing, including an air-cooling system, eliminating the need for chillers or large power supplies while providing a guaranteed > 2 G shot pump diode lifetime.

Q-TUNE Series

Q-TUNE-IR

The Q-TUNE series is a highly efficient, air-cooled, tunable wavelength laser, providing up to 8mJ, shorter than 5ns pulses at up to 100Hz, designed for temporally resolved spectroscopy, metrology, photo-acoustic imaging, and remote sensing applications. This laser uses an optical parametric oscillator (OPO) to produce a tunable wavelength range of 410-2300 nm with a linewidth narrower than 6 cm-1, which can extend to 210-410 nm with an optional second harmonic generator. Options for air purging for UV optics, spectrometer, and fiber-coupled OPO output are also available.

Q1 Series

Quantas-Q1-211: High energy, compact, nanosecond, DPSS laser

The Q1 series is a compact, energy-efficient, diode pumped, air-cooled, Q-switched laser available with up to 32 mJ at 1064 or 40 mJ at 1053nm @ 10 Hz, and rep rates up to 50Hz. The high peak powers and low divergence of the Q1 series enable efficient harmonic conversion through the 5th harmonic (213 or 211nm). The innovative design results in a user-friendly, turnkey system that requires little maintenance, and the laser’s variable pulse repetition rate and built-in sync pulse generator provide flexibility for triggering user equipment.

Q2 Series

Quantas-Q2-1064: High Energy, Compact, Nanosecond, DPSS Laser

The Q2 series is a diode-pumped, air-cooled, Q-switched laser emitting at 1064 or 1053nm, designed for a wide range of applications that require high peak power pulses. The water-free end-pumping technology produces high peak powers and low divergence, enabling efficient harmonics conversion through the 5th harmonic (213 or 211nm). This versatile platform can be configured in many ways, including up to 80mJ pulse energy at 10 Hz pulse repetition rate or up to 20mJ at 100 Hz. In the short cavity configuration, pulse duration can be reduced by 50% compared to the standard configuration.

Q2HE Series

Quantas-Q2HE: High energy, compact, nanosecond, DPSS laser

The Q2HE series is a highenergy, q-switched, DPSS laser series, available in either 1053nm or 1064nm fundamental wavelengths, with optional 2nd, 3rd, 4th, or 5th harmonic generation. This air-cooled series of lasers is designed for a wide range of applications that require high peak power pulses. Due to a short laser cavity, excellent thermal properties of the crystal, and an innovative water-free crystal cooling technology, the Q2HE series can deliver up to 120mJ of pulse energy and/or up to 5W average output power. This advanced laser design results in a compact, user-friendly turnkey system that requires little maintenance.  

Microchip Series

Bright Microlaser Microchip SB1 Laser

The Microchip series is a line of ultra-compact, single longitudinal mode (SLM), narrow linewidth, passive q-switch, ns/ps pulsed DPSS lasers. Offering exceptional performance and versatility in a compact form factor, every model is 1:1 interchangeable, regardless of wavelength. The lasers feature pulse widths from 400 ps to 2 ns, pulse energy up to 80 µJ, and repetition rates up to 100 kHz. Available in wavelengths from the UV to the NIR, this series is designed for LIDAR, 3D scanning, LIBS, night vision, and more.

SL-Pico Series

sleek modern dpss laser housing, simple cubic design, black and red with optical fiber & connectorThe SL-Pico series of picosecond supercontinuum lasers is designed to meet the diverse and dynamic needs of cutting-edge research and industrial applications. These supercontinuum white lasers are highly regarded for their wide wavelength range and cost-effectiveness. The SL-Pico offers a spectral range from 410 to 2400 nm, has high power, is very stable, and is capable of delivering power up to 8 W. The SLM versions are mode-locked fiber lasers with a fixed rep. rate, and the SLMV versions have a tunable repetition rate (up to 40 or 200 MHz), ensuring compatibility with a wide range of devices and various applications like fluorescence microscopy, TCSP, hyperspectral imaging, semiconductor inspection, and much more!

SOL Series

simple, compact OEM pulsed laser housing with cooling fan and f-theta lens

The SOL series is the most compact, air-cooled, Q-switched DPSS nanosecond industrial laser solution available with output power up to 60W @ 1064nm, designed for thin film removal, marking, and PCB repair applications. With its excellent beam quality, high peak power, wavelength options (1064, 532 & 355 nm), PRR from single shot up to 200 kHz, optional CW configuration, customization options, and a wide range of add-ons, this series is an excellent solution for OEM integrators, application specialists, and researchers. With attractive pricing (especially volume pricing) and a rugged, compact, lightweight, and easy-to-use single-unit design, the SOL laser is easy to integrate into any system, providing superior operational flexibility and performance/cost ratio.

TLS Series

sleek modern dpss laser housing, simple cubic design, black and redThe TLS series is the broadest continuously optically tunable broadband picosecond laser combining a supercontinuum laser & tunable bandpass filter. Users can tune output power, wavelengths from 410-1700nm by choosing the VIS, IR, SWIR, or a custom configuration, and real-time bandwidth control for TLS-Red (10 or 20nm fixed for TLS-Blue). These picosecond tunable lasers are suitable for various fields that require precision scanning and high output from fluorescence microscopy to time-resolved spectroscopy, such as TCSPC, Hyperspectral imaging, Machine vision, Semiconductors, Sensors, and other applications.

VaryDisk Series

The VaryDisk Series is a versatile family of thin-disk laser systems that provide high pulse energies at high average powers and are suitable for lab or industrial use. These thin-disk regenerative amplifiers offer a range of output specifications to fit various application needs. The base configurations provide 25 W average power with 2.5 mJ pulse energy @ 343 nm (THG), 50 W and 5 mJ @ 515 nm (SHG), and 100W and 100 mJ @ 1030 nm.

Vento Series

clean, modern, silver colored OEM DPSS Laser housing

The Vento series is a compact and ruggedized sub-nanosecond MOPA laser series, providing fully tailored solutions, whether operating in a clean, scientific laboratory or in harsh industrial machining or airborne LIDAR application environments, requiring a low SWaP configuration. With pulse durations down to 500 ps and repetition rates up to 200 kHz, this laser series produces a high average power of up to 50 W @ 532 nm and up to 100 W @ 1064 nm. Choose from many options including beam expanding & collimating options, low jitter options, air- or water-cooling, an industrial or up to IP68 protected package, and more options, depending on your requirements.

Wedge Series

metal pulsed laser housing, gray metal, cooling fins, output port

The Wedge series of DPSS lasers is a rugged industrial solution, designed for seamless integration into OEM micromachining, LIDAR, and LIBS end-user systems. Based on proprietary fast Q-switching technology, this series is compact, sealed, and monolithic, making them insensitive to vibrations & harsh environments. High peak powers, relatively low energy, and low heat generation allow efficient ablation and non-linear interaction. Available from 266 nm to ≈ 3 µm, up to 4 mJ pulse energy @ 1064, and up to 4 MW peak power, the lightweight, air-cooled package benefits LIDAR and aerospace applications, while short pulses provide exact time-of-flight measurements. Many optional add-ons and customization options.

Pulsed Lasers FAQs
What is a Pulsed Laser?
What is a Pulsed Laser?

A pulsed laser is any laser that does not emit a continuous-wave (CW) laser beam. Instead, they emit light pulses at some duration with some period of ‘off’ time between pulses and a frequency measured in cycles per second (Hz). There are several different methods for pulse generation, including passive and active q-switching and mode-locking. Pulsed lasers store energy and release it in these pulses or energy packets. This pulsing can be very beneficial, for example, when machining certain materials or features. The pulse can rapidly deliver the stored energy, with downtime in between, preventing too much heat from building up in the material. If you would like to read more about q-switches and the pros and cons of passive vs active q-switches, check out this blog “The Advantages and Disadvantages of Passive vs Active Q-Switching,” or check out our Overview of Pulsed Lasers section on our Lasers 101 Page!

What is the best laser for LIDAR?

What is the best laser for LIDAR?

There are actually numerous laser types that work well for various LIDAR and 3D Scanning applications. The answer comes down to what you want to measure or map. If your target is stationary, and distance is the only necessary measurement, short-pulsed lasers, with pulse durations of a few nanoseconds (even <1ns) and high pulse energy are what you’re looking for. This is also accurate for 3D scanning applications (given a stationary, albeit a much closer target), but select applications can also benefit from frequency-modulated, single-frequency (narrow-linewidth) fiber lasers. If your target is moving, and speed is the critical measurement, you need a single-frequency laser to ensure accurate measurement of the Doppler shift. If you want to learn more about the various forms of LIDAR and the critical laser source requirements, check out our LIDAR page for a list of detailed articles, as well as all the LIDAR laser source products we offer. Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What is the best laser for tattoo removal?

What is the best laser for tattoo removal?

Similar to laser hair removal, laser tattoo removal utilizes a process known as selective photothermolysis to target the embedded ink in the epidermis and dermis.  Photothermolysis is the use of laser microsurgery to selectively target tissue utilizing specific wavelengths of light to heat and destroy the tissue without affecting its surroundings.  In laser tattoo removal this is accomplished by using a focused q-switched laser with a fluence of approximately 10 J/cm2, to heat the ink molecules locally.  Since the q-switched laser’s pulse duration (100 ps to 10 ns) is shorter than the thermal relaxation time of the ink molecules it prevents heat diffusion from taking place.  In addition to minimizing damage to the surrounding tissue, this rapid localized heating results in a large thermal differential, resulting in a shock wave which breaks apart the ink molecules. If you would like more details on pulsed lasers for tattoo removal applications, see our Aesthetics Lasers page here! Get more information from our Lasers 101, Blogs, Whitepapers, and FAQ pages in our Knowledge Center!

What is the best laser type for multi-photon microscopy?

What is the best laser type for multi-photon microscopy?

Multiphoton excitation requires high peak power pulses. Previously, wavelength tunable Ti:Sapphire lasers dominated this area, leading to the development of standard methods using a conventional pulse regime with typically 100-150 fs pulse duration, 80 MHz repetition rate, and watt level average power with specific wavelengths such as 800 nm, 920 nm, and 1040-1080 nm. Recently, femtosecond pulsed fiber lasers have started becoming the optimal solution due to their low relatively low fluence, limiting damage to living samples. Other advantages provided by fs fiber lasers include a more attractive price point, very compact and robust format, high electrical efficiency, high reliability, and less maintenance of cost of ownership. If you would like more details on why fs fiber lasers are becoming the optimal choice for multi-photon excitation applications, read this article: “Higher Power fs Fiber Lasers to Image Better, Deeper & Faster.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What is the difference between active and passive q-switching?
What is the difference between active and passive q-switching?

There are a wide variety of q-switch technologies, but the technique as a whole can be broken down into two primary categories of q-switches, passive and active. Active q-switches could be a mechanical shutter device, an optical chopper wheel, or spinning mirror / prism inside the optical cavity, relying on a controllable, user set on/off ability. Passive q-switches use a saturable absorber, which can be a crystal (typically Cr:YAG), a passive semiconductor, or a special dye, and automatically produce pulses based on it’s design. Both passive and active q-switching techniques produce short pulses and high peak powers, but they each have their pros and cons. When choosing between actively q-switched and passively q-switched lasers, the key is to understand the tradeoffs between cost/size and triggering/energy and decide which is best for your particular application. Read more about these tradeoffs in this article: “The Advantages and Disadvantages of Passive vs Active Q-Switching.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What type of laser is used for LIBS?
What type of laser is used for LIBS?

A laser source used for LIBS must have a sufficiently large energy density to ablate the sample in as short a time possible. Typically, pulsed DPSS lasers take center stage here. However, it’s been shown that pulsed fiber lasers can also be a great option. For example, you could utilize fiber lasers to measure detection limits as low as micrograms per gram (µg/g) for many common metals and alloys, including aluminum, lithium, magnesium, and beryllium. Analytical performances showed to be, in some cases, close to those obtainable with a traditional high-energy Nd:YAG laser. The beam quality of fiber lasers, in conjunction with longer pulse widths, resulted in significantly deeper and cleaner ablation craters. If you want to learn more about LIBS and ideal laser sources, check out either this blog: “OEM Fiber Lasers for Industrial Laser Induced Breakdown Spectroscopy,” or this blog: “Laser Induced Breakdown Spectroscopy (LIBS) in Biomedical Applications.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

Which IR laser is best for laser target designation?
Which IR laser is best for laser target designation?

There are many different types of laser designation systems used by the military today. Still, they all share the same basic functionality and outcome. At a glance, the laser requirements seem relatively straightforward. The laser needs to be invisible to the human eye, and it needs to have a programmable pulse rate. Still, when you look in more detail, many small factors add up to big problems if not appropriately addressed. Excellent divergence and beam pointing stability, low timing jitter, and rugged, low SWaP design are all critical features of a good laser designation source. Read more on these critical features in this article: “What are the Critical Laser Source Requirements for Laser Designation?” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!