Warning: DOMDocument::loadHTML(): htmlParseEntityRef: expecting ';' in Entity, line: 15 in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/header.php on line 30

Warning: DOMDocument::loadHTML(): htmlParseEntityRef: expecting ';' in Entity, line: 15 in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/header.php on line 30

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Warning: Invalid argument supplied for foreach() in /srv/users/rpmclaserscom/apps/rpmclasers-dev/public/wp-content/themes/maxcanvas_child/inc/table.php on line 179

Yellow Lasers:

High-Performance for Precision Science & Industrial Applications

          • Range of Yellow Laser Types & Configurations
          • Precision Wavelengths & Reliable Output for Demanding Applications
          • Optimized for Scientific & Industrial Use

We’re experts at helping select the right configuration for you!

The Yellow Lasers We Offer:

simple line art illustrating many choices and options

Wide Range of Yellow Laser Types & Configurations
    • High-performance pulsed & CW DPSS, and tunable pulsed lasers are available
    • Options for free-space or fiber-coupled output tailored to application needs
    • Integration levels from OEM components to complete turnkey systems

simple line art illustrating a 'diamond award' for high-quality

Precision Wavelengths & Reliable Output for Demanding Applications
    • Matured DPSS technology delivering stable yellow wavelengths from 560 to 590nm
    • Various power, energy, pulse width & repetition rate options for diverse applications
    • Ideal for fluorescence microscopy, DNA sequencing, and other life science research

gear arrow and puzzle pieces representing highly flexible and easily integrated lasers

Optimized for Scientific & Industrial Use
    • Excellent beam quality and stability for precise targeting in microscopy and spectroscopy
    • Enables sensitive detection in fluorescence applications with reliable excitation sources
    • Configurable platforms ensure easy integration across scientific and medical devices

For nearly 30 years, RPMC’s selection of Yellow Lasers has set the standard for affordable precision across a wide range of applications, from defense to medical, industrial, and research with 1000’s of successful units in the field. We understand that every application has unique requirements, which is why our configurable platforms are designed to offer the perfect fit for your needs—whether you’re working with fundamental wavelengths, harmonics, or specialty wavelengths. As your partner, we’re here to guide you through the selection process, ensuring that your yellow laser integrates seamlessly into your existing systems. With time-tested technology that balances power and precision, we’re committed to supporting your success every step of the way.

Don’t hesitate to ask us anything!

Filters Reset

Category

Type

Power Selection

Energy Selection

Picture Part Number Wavelength (nm) Description Type
Harmony: Optical Parametric Amplifier for Jasper X0 & Jasper Flex Harmony 210-10000, Multiple Wavelength Options Optical Parametric Amplifier, OPA, 210-10,000nm, <200fs, up to 300kHz, 30-200µJ pump energy Pulsed Fiber Lasers, Tunable Lasers, Ultrafast Lasers, Multi Wavelength, Ruggedized, Adjustable Rep Rate, Customizable
LXX-VIS-SLM: Visible SLM Laser Module LXX-VIS-SLM 532, 553, 561, 633 Laser Module, Stabilized, Visible, 532-633nm, up to 300mW LD Module, CW DPSS Lasers, Narrow Linewidth, Long Coherence Length, Single Longitudinal Mode (SLM), Collimated Beam, Fiber-Coupled, Customizable
LXX-VIS-SM: Visible Single Mode Laser Diode Module LXX-VIS-SM 405, 415, 445, 450, 458, 473, 488, 505, 515, 532, 553, 561, 607, 633, 638, 640, 642, 647, 660, 730 Laser Module, Single mode, Visible, 405-730nm, up to 500mW LD Module, CW DPSS Lasers, Collimated Beam, Fiber-Coupled, Customizable
NPS: Narrowband Picosecond Mode-Locked Laser NPS 266-1064, 700-1800 Tunable DPSS Laser, ps Pulsed, 266-1064nm, up to 10W, passive Qsw up to 80MHz, narrow linewidth Pulsed DPSS Lasers, Tunable Lasers, Ultrafast Lasers, Narrow Linewidth, Ruggedized, High Peak Power, Customizable
sleek, modern, light grey colored DPSS laser housing Q-SHIFT Multiple Wavelength Options DPSS Laser, ns pulsed, 291-1571nm, up to 40mJ, up to 100Hz Pulsed DPSS Lasers, High Pulse Energy, High Peak Power, Low Jitter, Turn-Key System, Customizable
sleek, modern, light grey colored OPO & DPSS laser housing Q-TUNE Tunable Tunable DPSS Laser, OPO, ns pulsed, 210-2300nm, up to 8mJ, up to 100Hz Pulsed DPSS Lasers, Tunable Lasers, Multi Wavelength, High Pulse Energy, High Peak Power, Turn-Key System, Customizable
SL-Pico: White Light Picosecond Supercontinuum Laser SL-Pico 410-2400 Supercontinuum Laser, ps pulsed, White Light, 410-2400nm, up to 200MHz Supercontinuum Laser, Broadband Lasers, Ultrafast Lasers, Multi Wavelength, Adjustable Rep Rate, High Peak Power, Turn-Key System
sleek modern dpss laser housing, simple cubic design, black and blue TLS-Blue-Fixed-Bandwidth Tunable Tunable Supercontinuum Laser, Broadband, ps pulsed, 410-1700 nm, up to 200MHz Supercontinuum Laser, Broadband Lasers, Tunable Lasers, Ultrafast Lasers, Multi Wavelength, Adjustable Rep Rate, High Peak Power, Turn-Key System
TLS-Red-Tunable-Bandwidth: Broadband Tunable Picosecond Laser TLS-Red-Tunable-Bandwidth Tunable Tunable Supercontinuum Laser, Broadband, ps pulsed, 410-1700 nm, up to 200MHz Supercontinuum Laser, Broadband Lasers, Tunable Lasers, Ultrafast Lasers, Multi Wavelength, Adjustable Rep Rate, High Peak Power, Turn-Key System

Yellow lasers, spanning the 560 to 590 nm range, are essential tools for applications where precise wavelength control and reliable beam stability are critical. RPMC offers a selection of gas, DPSS, and tunable pulsed yellow lasers, providing up to 500 mW of average power. These lasers are ideal for demanding applications in DNA sequencing, confocal fluorescence microscopy, and various life science fields where sensitive detection is paramount. With options for free-space or fiber-coupled output and integration levels from OEM to turnkey systems, RPMC’s yellow lasers are designed for seamless integration and consistent performance. As your dedicated partner, we’re here to help you choose the best solution to meet your specific application needs.

Learn More About Yellow Lasers

Lasers that emit yellow wavelengths are one of the most challenging lasers to produce because there are no direct diodes or solid-state sources available.  As a result, most of these lasers are frequency-doubled Nd: YAG lasers which are designed to lase at one of the secondary lines such as 1122 nm.  Even though the transition cross section at 1122 nm is about 40% of the 1064 nm laser line, the technology has matured over the past ten years to the point where yellow diode-pumped solid-state (DPSS) lasers are now as reliable as their gas laser counterparts.  It is instrumental for a wide array of applications, but most notably as an excitation source in DNA sequencing and confocal fluorescence microscopy.

Let Us Help

With 1000s of fielded units, and over 25 years of experience, providing OEMs, contract manufacturers, and researchers with the best laser solution for their application, our expert team is ready to help! Working with RPMC ensures you are getting trusted advice from our knowledgeable and technical staff on a wide range of laser products.  RPMC and our manufacturers are willing and able to provide custom solutions for your unique application.

If you have any questions, or if you would like some assistance please contact us. Furthermore, you can email us at info@rpmclasers.com to talk to a knowledgeable Product Manager.

Check out our Online Store: This page contains In-Stock products and an ever-changing assortment of various types of new lasers at marked-down/discount prices.

We’re experts at helping select the right configuration for you!

CW Lasers FAQs
How do I align my optical system?

How do I align my optical system?

Laser alignment can be a challenging task, but aligning a laser beam doesn’t have to be as complicated as it might seem with the right optical alignment tools and proper laser alignment techniques. Multiple optical alignment techniques have been developed over the years, utilized by technicians and engineers to simplify the alignment process. With the development of these universal laser beam alignment methods, along with some laser alignment tips and tricks, you don’t need to be a laser expert to perform your alignments with relative ease, ensuring your laser beam path is right where you want it to be and your beam is on target every time. Read our article, titled “Laser Alignment: HeNe Lasers, Methods, and Helpful Tips” to get the knowledge and advice you need for proper optical beam path alignment utilizing HeNe Lasers. Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

Should I choose multimode or single-mode for Raman spectroscopy?
Should I choose multimode or single-mode for Raman spectroscopy?

On the surface, this seems like a simple question since Raman is a nonlinear optical effect and therefore the tighter the beam can be focused the higher the conversion efficiency.  Seemingly a single-mode laser would be preferable, but in practice there are other factors that can complicate the situation. The first question you should ask yourself when considering which type of laser to choose is whether you are doing microscopy or bulk sampling.  If the answer to that question is microscopy, then you immediately should go with a single mode laser.  Since the goal of any microscopy system is to produce the highest resolution image possible, the number one consideration should be how tightly can the laser beam be focused down. However, there are several other considerations when choosing between multimode and single-mode. Learn which is best for you in this article: “Multimode vs Single-Mode Lasers for Raman Spectroscopy.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What is a CW Laser?
What is a CW Laser?

A CW or continuous-wave laser is any laser with a continuous flow of pump energy. It emits a constant stream of radiation, as opposed to a q-switched or mode-locked pulsed laser with a pulsed output beam. A laser is typically defined as having a pulse width greater than 250 ms. The first CW laser was a helium-neon (HeNe) gas laser, developed in 1960, which you can read more about in this blog “HeNe Lasers: Bright Past, Brighter Future.” If you want to read more about the types of CW Lasers we offer, check out the Overview of CW Lasers section on our Lasers 101 Page!

What is the best laser for optical surface flatness testing?
What is the best laser for optical surface flatness testing?

It is essential that the laser exhibit a high level of spectral stability, ensuring that any changes in the interference pattern are caused by features in the sample and not originating from the laser beam. In addition to spectral stability, high beam pointing stability ensures consistent measurements by mitigating any beam position drift concerning the position of the sample. Lasers with longer coherence lengths, and subsequently narrower linewidths, play an important role in determining the resolution of the measurement, as well as consideration of the wavelength used. Exhibiting both single longitudinal mode and single spatial mode has excellent benefits. To get more details on preferred laser sources for interferometry in this article: “Stable, Narrow Linewidth, CW DPSS Lasers for Precision Interferometry.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What type of laser do I need for confocal microscopy?
What type of laser do I need for confocal microscopy?

The short answer is: You have some flexibility, but the laser source should be PM fiber-coupled and have a low noise, TEM00 beam mode. The excitation bandwidth of the fluorophores used must overlap with the laser wavelength, as various fluorophores need different wavelengths. So, you may require multiple lasers, which means you’ve got a beam combining alignment challenge to tackle. One way to avoid this is through the convenience of Multi-Wavelength Beam Combiners.

If you want to learn more on the subject of confocal fluorescence microscopy, ideal laser sources, and the benefits of beam combiners, check out this white paper: “Multi-Wavelength Laser Sources for Multi-Color Fluorescence Microscopy.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What type of laser is best for Doppler LIDAR?

What type of laser is best for Doppler LIDAR?

Various LIDAR signal methods for measuring velocity have one critical requirement in common, the need for precise control over laser frequency. While a wide variety of single-frequency lasers have been used in Doppler LIDAR research, the industry as a whole has adopted single-frequency fiber lasers as the ideal light source. Fiber lasers have several advantages over traditional DPSS lasers, all of which derive from the geometry of the fiber optic itself, namely the innate ability to have an extremely long single-mode optical cavity. This geometry allows for the production of either extremely high-power, single-mode lasers producing unprecedented brightness, or extremely narrow band lasers, with near perfect single-frequency output. If you want to learn more about Doppler LIDAR, the critical considerations involved, and ideal laser sources, check out this whitepaper: “Single-Frequency Fiber Lasers for Doppler LIDAR.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What’s the difference between single transverse mode & single longitudinal mode?

What’s the difference between single transverse mode & single longitudinal mode?

Within the laser community, one of the most overused and often miscommunicated terms is the phrase “single mode.”  This is because a laser beam when traveling through air takes up a three-dimensional volume in space similar to that of a cylinder; and just as with a cylinder, a laser beam can be divided into independent coordinates each with their own mode structure.  For a cylinder we would call these the length and the cross-section, but as shown in the figure below for a laser beam, we define these as the transverse electromagnetic (TEM) plane and the longitudinal axis.   Both sets of modes are fundamental to the laser beam’s properties, since the TEM modes determine the spatial distribution of the laser beams intensity, and the longitudinal modes determine the spectral properties of the laser.  As a result, when a laser is described as being “single-mode” first you need to make sure that you truly understand which mode is being referred to.  Meaning that you must know if the laser is single transverse mode, single longitudinal mode, or both. Get all the information you need in this article: “What is Single Longitudinal Mode?” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

Pulsed Lasers FAQs
What is a Pulsed Laser?
What is a Pulsed Laser?

A pulsed laser is any laser that does not emit a continuous-wave (CW) laser beam. Instead, they emit light pulses at some duration with some period of ‘off’ time between pulses and a frequency measured in cycles per second (Hz). There are several different methods for pulse generation, including passive and active q-switching and mode-locking. Pulsed lasers store energy and release it in these pulses or energy packets. This pulsing can be very beneficial, for example, when machining certain materials or features. The pulse can rapidly deliver the stored energy, with downtime in between, preventing too much heat from building up in the material. If you would like to read more about q-switches and the pros and cons of passive vs active q-switches, check out this blog “The Advantages and Disadvantages of Passive vs Active Q-Switching,” or check out our Overview of Pulsed Lasers section on our Lasers 101 Page!

What is the best laser for LIDAR?

What is the best laser for LIDAR?

There are actually numerous laser types that work well for various LIDAR and 3D Scanning applications. The answer comes down to what you want to measure or map. If your target is stationary, and distance is the only necessary measurement, short-pulsed lasers, with pulse durations of a few nanoseconds (even <1ns) and high pulse energy are what you’re looking for. This is also accurate for 3D scanning applications (given a stationary, albeit a much closer target), but select applications can also benefit from frequency-modulated, single-frequency (narrow-linewidth) fiber lasers. If your target is moving, and speed is the critical measurement, you need a single-frequency laser to ensure accurate measurement of the Doppler shift. If you want to learn more about the various forms of LIDAR and the critical laser source requirements, check out our LIDAR page for a list of detailed articles, as well as all the LIDAR laser source products we offer. Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What is the best laser for tattoo removal?

What is the best laser for tattoo removal?

Similar to laser hair removal, laser tattoo removal utilizes a process known as selective photothermolysis to target the embedded ink in the epidermis and dermis.  Photothermolysis is the use of laser microsurgery to selectively target tissue utilizing specific wavelengths of light to heat and destroy the tissue without affecting its surroundings.  In laser tattoo removal this is accomplished by using a focused q-switched laser with a fluence of approximately 10 J/cm2, to heat the ink molecules locally.  Since the q-switched laser’s pulse duration (100 ps to 10 ns) is shorter than the thermal relaxation time of the ink molecules it prevents heat diffusion from taking place.  In addition to minimizing damage to the surrounding tissue, this rapid localized heating results in a large thermal differential, resulting in a shock wave which breaks apart the ink molecules. If you would like more details on pulsed lasers for tattoo removal applications, see our Aesthetics Lasers page here! Get more information from our Lasers 101, Blogs, Whitepapers, and FAQ pages in our Knowledge Center!

What is the difference between active and passive q-switching?
What is the difference between active and passive q-switching?

There are a wide variety of q-switch technologies, but the technique as a whole can be broken down into two primary categories of q-switches, passive and active. Active q-switches could be a mechanical shutter device, an optical chopper wheel, or spinning mirror / prism inside the optical cavity, relying on a controllable, user set on/off ability. Passive q-switches use a saturable absorber, which can be a crystal (typically Cr:YAG), a passive semiconductor, or a special dye, and automatically produce pulses based on it’s design. Both passive and active q-switching techniques produce short pulses and high peak powers, but they each have their pros and cons. When choosing between actively q-switched and passively q-switched lasers, the key is to understand the tradeoffs between cost/size and triggering/energy and decide which is best for your particular application. Read more about these tradeoffs in this article: “The Advantages and Disadvantages of Passive vs Active Q-Switching.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What type of laser is used for LIBS?
What type of laser is used for LIBS?

A laser source used for LIBS must have a sufficiently large energy density to ablate the sample in as short a time possible. Typically, pulsed DPSS lasers take center stage here. However, it’s been shown that pulsed fiber lasers can also be a great option. For example, you could utilize fiber lasers to measure detection limits as low as micrograms per gram (µg/g) for many common metals and alloys, including aluminum, lithium, magnesium, and beryllium. Analytical performances showed to be, in some cases, close to those obtainable with a traditional high-energy Nd:YAG laser. The beam quality of fiber lasers, in conjunction with longer pulse widths, resulted in significantly deeper and cleaner ablation craters. If you want to learn more about LIBS and ideal laser sources, check out either this blog: “OEM Fiber Lasers for Industrial Laser Induced Breakdown Spectroscopy,” or this blog: “Laser Induced Breakdown Spectroscopy (LIBS) in Biomedical Applications.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

Which IR laser is best for laser target designation?
Which IR laser is best for laser target designation?

There are many different types of laser designation systems used by the military today. Still, they all share the same basic functionality and outcome. At a glance, the laser requirements seem relatively straightforward. The laser needs to be invisible to the human eye, and it needs to have a programmable pulse rate. Still, when you look in more detail, many small factors add up to big problems if not appropriately addressed. Excellent divergence and beam pointing stability, low timing jitter, and rugged, low SWaP design are all critical features of a good laser designation source. Read more on these critical features in this article: “What are the Critical Laser Source Requirements for Laser Designation?” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!